In this activity you will be exploring $y = \frac{\sin(x)}{x}$. When the value of a function is $\frac{0}{0}$, the function at that point is said to be indeterminate.

Problem 1 - Graphical Limit

Graphing the function
$$f(x) = \frac{\sin(x)}{x}$$
:

Go to the y= screen and type
$$\overline{y}$$
 and select 1: n/d and enter $\frac{\sin(x)}{x}$ into the fraction template.

Set the viewing window by pressing zoom and selecting **7:ZTrig** to view the graph.

1. According to the graph, approximately what value does $Y_1(x)$ appear to equal as x approaches 0?

Exploring the graph near x = 0:

Remove the axes from the graph by pressing 2nd zoom. Arrow down to 'Axes' and press • until "Off" appears. Press graph to return to the graph of the function.

- **2.** Press trace. Examine points in the neighborhood of x = 0.
 - **a.** Type 0.1 enter. Then type 0.01 enter. What does the *y*-value equal as you move the point from the right toward x = 0?
 - **b.** Repeat for -0.1, -0.01, etc. What does the *y*-value equal as you move the point from the left toward x = 0?
 - c. What happens when you type 0 enter? Why?

Problem 2 – Numerical Limit

Press 2nd window to change TblStart to -0.1 and ΔTbl to 0.01.

- **3.** Press 2nd graph to view the table of the function being graphed. Arrow down to observe what is happening to Y1 as x approaches 0. To see more decimal places for Y1 arrow over to the Y1 column and continue to arrow down and up.
 - **a.** Is **Y1** defined when x = 0? Explain.
 - b. Does Y1 appear to approach the same value from both sides of zero?

1

Limits of Indeterminant Forms

Name _____

Student Activity

Problem 3 - Practice Problems

Use a graph and a table to determine the limit of the following problems.

Tip: The last values for the *x*- and *y*-coordinates are automatically stored in case you want to recall the values of these coordinates for a calculation on the HOME screen. To see this press 2nd mode, then press (x,t,t,t) and (enter), then [alpha] 1.

4.
$$\lim_{x\to 1} \frac{x-1}{x^3-1}$$

5.
$$\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$$

6.
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}}$$