

Accelerating Student Engagement through Computer Science and Data Science

Supporting Educational Partnerships

Brian Dunnicliffe Education Technology Consultant AK, CA, CO, HI, ID, MT, NV, OR, UT, WA, WY 206.802.4796 | <u>bdunnicliffe@ti.com</u>

11:45 – 12:00 CST Participant Login

12:00 – 12:05 CST Introduction

12:05 – 1:10 CST Featured Speakers

1:10-1:15 CST Q&A

1:15 – 1:25 CST TI Representative

1:25 - 1:30 CST Q&A/Closing

Accelerating Student Engagement through Computer Science and Data Science

Presented by the Santa Clara County Office of Education, San Jose, CA

Introduction

Ma Bernadette Andres-Salgarino, Ed.D. Coordinator - Mathematics bandressalgarino@sccoe.org @salg274

Karen Larson Coordinator – Computer Science klarson@sccoe.org @karen_larson

Craig Blackburn, Ed.D. Director, Integrated STEAM (iSTEAM) <u>cblackburn@sccoe.org</u> @n0v8_learning

Objectives

- (1)Explore and develop a mindset of a designer through its integration with computational thinking with mathematical literacy;
- (2)Design an interdisciplinary program of implementation for Data Science and Computer Science; and
- (3)Increase student engagement using project-based learning experiences that combine content with hands-on learning and real life applications.

Design Thinking and Computational Thinking

Let's start with a story...

SCCOE: Equity | Diversity | Inclusion | Partnership 7

10 boxes you have to move from A to B

Computational Thinker

A set of instructions would be drafted, tested, and the most efficient route would be attained.

Questions:

- What are the sizes of the boxes?
- How heavy are they?
- Is anything fragile?

Design Thinker

Why do you want to move the box in the first place?

Design Thinking

Being empathetic, experimental, prototype & testing

Computational Thinking

Solving problems through logical sequencing

Design Thinking

Design thinking shapes computational thinking and it is design thinking that needs to be given the highest priority in our education system.

A Solution

Intersections in Practices

Mathematics Computer Science

Sense-Making Pattern and Structure Methods & Representations Reasoning & Proving Defining Problems Creating Artifacts Testing and Refining Collaboration Question Asking Pattern Seeking Meaning Making Communication

Data Science

Design Dash

Student Engagement

- Externalizing ideas words, drawings, sketches, and prototypes
- Fast decisions = surprise, creativity, fun, and a lot of output
- Discovering and framing a challenge around human needs
- Learning about their own ideas

TEAM MEMBERS (3-4)

WAIT HERE TO PICK A CARD

Plan A Road Trip!

#steamsccoe or #sccoetitalks

Get to know your TEAM

Each team member shares 3 ways they connect to this topic.

•00000

OBSERVE a New Perspective

0

Invite an interviewee from another group to a conversation.

Get to know your topic through their eyes. Ask about the value and the challenges of involved in planning their road trip.

Conversation Tips

- Listen 80% of the time; talk 20% of the time.
- Look for problems, pain points, and challenges.
- If you hear something interesting, ask "why?"

DEFINE your challenge

As a team, use your interview to frame a human-centered design problem.

WE TALKED TO

Drawa picture	1
	1
i	
1	
1	- i
1	i
1	1
	1
	I I
	!
1	
1	
1	i
1	1

THEY SAY THEY NEED TO

What do they think are the main problems and challenges?
b

WE'D NICKNAME THEM

e.g. Mr Clean, The Queen of DIY, The Calendar Wizard	;
	1
	i
	1
	i i
	1

HERE'S WHAT WE THINK IS THE UNDERLYING

PROBLEM

What do you see that they don't see? What's the need behind their need?

00000

- The "why" behind data science
- K 12 lessons
- High school data science course draft
- Videos and resources

Data Science

Data Science

- data gathering
- patterns
- sense-making
- communication

Data to Explore

- temperature and rainfall
- elevation
- length of rainy season
- distance of trip
- tourist season

DRAW an idea

Use the chart paper to draw Backpack Master, then note the problems you heard and the solutions that could solve the problems.

TEST your drawing

ITERATE your drawing

Finally, note on your drawing any improvements to your prototype based on the feedback you received.

Be open to changing your assumptions about your interviewee and what they need.

Be prepared to share your drawing with the rest of the class and consider additional feedback.

Created by Molly Wilson at the HPI School of Design Thinking. You are free to use and remix this activity – we encourage it! Please credit us, and release all derivative works as Creative Commons.

Computer Science Integration

- Interaction with other objects (including the other Sphero)
- Mimicking actions to suggest emotion (e.g., spinning, revolving, zigzagging, etc.)

Review and Reflect

Connect with us!

Ma Bernadette Andres-Salgarino, Ed.D. Coordinator - Mathematics bandressalgarino@sccoe.org

Karen Larson Coordinator – Computer Science klarson@sccoe.org

Craig Blackburn, Ed.D. Director, Integrated STEAM (iSTEAM) <u>cblackburn@sccoe.org</u> @n0v8_learning

Q & A

Supporting Educational Partnerships

Brian Dunnicliffe Education Technology Consultant AK, CA, CO, HI, ID, MT, NV, OR, UT, WA, WY 206.802.4796 | <u>bdunnicliffe@ti.com</u>

Meeting & Collaboration

Learning Tools

Building Teacher Leaders

Professional Learning

Individualized Coaching

Robyn Poulsen

Mr. Dana Morse

Jamila Gadsden

Michelle Grooms

Beth Smith

Pareesa Schulte

Marco Gonzalez

Brian Dunnicliffe

Ron Thomas

Tom Steinke

ME, NH, VT, MA, CT, RI, NJ, MD, DE

NY, PA

NC, SC, VA, Washington DC

OH, IN, MI, KY, WV, WI

FL, AL, GA, MS, LA, AR

TX ESCs 4, 10-13, 15, 18-20, AZ, NM

TX ESCs 1-3, 5-9, 14, 16, 17, OK

AK, CA, CO, HI, ID, MT, NV, OR, UT, WA, WY

IL, MO, TN, MN, SD, ND, IA, NE, KS

Canada

TI Talks May 6, 2021: 1 – 2:30 EST/Noon -1:30 CST Engineering from Day One

Join us as our speakers from the Ira A. Fulton Schools of Engineering at Arizona State University share an initiative focused on creating paths to engineering for underrepresented populations: first-generation students, minorities, women and those with socio-economic needs.

https://education.ti.com/en/resources/funding-and-research/partners/titalks/may-event

Tuesday Webinars - <u>https://education.ti.com/en/professional-</u> <u>development/teachers-and-teams/online-learning</u>

Q & A Closing

Thank you for joining us today!

