

TI-30X Pro MathPrint™ -tieteislaskimen opas

Lisätietoja TI-teknologiasta saat tukisivustolta osoitteessa education.ti.com/eguide.

Tärkeitä tietoja

Texas Instruments ei anna mitään nimenomaista tai oletettua takuuta esimerkiksi minkään ohjelman tai kirjallisten materiaalien virheettömyydestä ja soveltuvuudesta tiettyyn tarkoitukseen, ja ohjelmat ja materiaalit tarjotaan käyttöön sellaisina kuin ne ovat. Texas Instruments ei ole missään tapauksessa vastuussa näiden aineistojen hankinnasta tai käytöstä aiheutuvista tai niiden yhteydessä esiintyvistä taloudellisista, sivu-, oheis- tai seurausvahingoista. Vaatimuksesta riippumatta Texas Instrumentsin vastuu rajoittuu vain ja ainoastaan kyseisen tuotteen hankintahintaan. Texas Instruments ei myöskään ole vastuussa minkäänlaisista vaatimuksista, jotka koskevat näiden materiaalien käyttöä jonkin toisen osapuolen taholta.

MathPrint, APD, Automatic Power Down ja EOS ja ovat Texas Instruments Incorporatedin tavaramerkkejä.

Copyright © 2025 Texas Instruments Incorporated

Todelliset tuotteet saattavat erota hieman mukana tulevista kuvista.

Sisältö

Käytön aloittaminen	1
Laskimen kytkeminen päälle ja pois päältä	1
Näytön kontrasti	1
Perusnäyttö	1
Kakkostoiminnot	2
Tilat	2
Monipainallusnäppäimet	5
Valikot	5
Esimerkkejä	6
Lausekkeiden ja historiatietojen selaaminen	6
Vastauksen vaihtaminen	7
Viimeinen vastaus	7
Laskutoimitusten järjestys	8
Tyhjentäminen ja korjaaminen	10
Muisti ja tallennetut muuttujat	10
Matemaattiset funktiot	14
Murtoluvut	14
Kymmenpotenssimuoto [EE]	16
Potenssit, neliöjuuret ja käänteisfunktiot	17
Pi (pi-symboli)	18
Matematiikka	19
Numerofunktiot	20
Kulmat	22
Trigonometria	24
Hyperboliset funktiot	26
Logaritmi- ja eksponenttifunktiot	27
Tilastot, regressiot ja jakaumat	28
Todennäköisyys	
Matemaattiset työkalut	42
Tallennetut operaatiot	42
Dataeditori ja listakaavat	43
Funktiotaulukko	47
Lausekkeen sieventäminen	50
Vakiot	51
Kompleksiluvut	53
Viitetiedot	56
Virheet ja ilmoitukset	
Paristojen tiedot	60

Vianmääritys	
Yleistietoja	

Käytön aloittaminen

Tässä kappaleessa käsitellään laskimen perustoimintoja.

Laskimen kytkeminen päälle ja pois päältä

on kytkee laskimen päälle. 2nd [off] kytkee sen pois päältä. Näyttö tyhjenee, mutta historiatiedot, asetukset ja muisti säilyvät tallessa.

Jos mitään näppäintä ei paineta noin kolmeen minuuttiin, APD[™] (Automatic Power Down[™]) -toiminto katkaisee virran laskimesta automaattisesti. Paina näppäintä on APD[™]-toiminnon jälkeen. Näyttö, keskeneräiset laskutoimitukset, asetukset ja muisti säilyvät tallessa.

Näytön kontrasti

Näytön kirkkaus ja kontrasti voivat riippua huoneen valaistuksesta, paristojen virrasta ja katselukulmasta.

Kontrastin säätäminen:

- 1. Paina kerran 2nd-näppäintä.
- 2. Paina näppäintä [••] (näyttö tummenee) tai näppäintä [••] (näyttö vaalenee).

Huomaa: Kontrasti säätyy yhden tason kerrallaan. Voit tehdä toimenpiteet 1 ja 2 uudelleen tarpeen mukaan.

Perusnäyttö

Perusnäyttöön voi syöttää matemaattisia lausekkeita ja funktioita sekä muita ohjeita. Vastaukset näkyvät perusnäytössä.

TI-30X Pro MathPrint™ -laskimen näyttöön mahtuu enintään neljä riviä, 16 merkkiä rivillään. Jos syöte tai lauseke ei näy kokonaan näytössä, saat sen näkyviin vierittämällä näyttöä vasemmalle ja oikealle (näppäimillä ④ ja ④).

MathPrint[™]-tilassa voi syöttää enintään neljä tasoa peräkkäisiä sisäkkäisiä funktioita ja lausekkeita, jotka sisältävät murtolukuja, neliöjuuria, eksponentteja merkinnöillä ^, ∜y, e× ja 10×.

Kun lasket jonkin syötteen arvon perusnäytössä, tilasta riippuen vastaus näkyy joko suoraan syötteen oikealla puolella tai seuraavan rivin oikeassa reunassa.

Näytössä voi näkyä erikoisilmaisimia ja kohdistimia, jotka antavat lisätietoja funktioista tai vastauksista.

Ilmaisin	Määritelmä
2ND	Kakkostoiminto
FIX	Kiinteä desimaalipiste (Katso kappale Tilat)
SCI, ENG	Kymmenpotenssimuoto tai tekninen merkintätapa (Katso kappale Tilat)

Ilmaisin	Määritelmä
DEG, RAD, GRAD	Kulmatila (aste, radiaani tai graadi) (Katso kappale Tilat)
L1, L2, L3	Näyttää yläpuolella listat dataeditorissa
Н, В, О	Ilmaisee kantalukujärjestelmän HEX, BIN tai OCT. Oletusarvoisessa DEC-tilassa ei näy mitään ilmaisinta.
X	Laskin suorittaa laskutoimitusta. Voit keskeyttää laskutoimituksen näppäimellä on.
• •	Syöte on tallennettu muistiin näkyvissä olevan näyttöalueen edelle ja/tai perään. Voit vierittää näyttöä näppäimillä ⊙ ja ⊙.
•	Ilmaisee, että monipainallusnäppäin on aktiivinen.
	Normaali kohdistin. Ilmaisee kohdan, jossa seuraava syötettävä merkki näkyy. Korvaa minkä tahansa nykyisen merkin.
*	Syöttörajan kohdistin. Muita merkkejä ei voi enää syöttää.
_	Lisäyskohdistin. Lisää merkin kohdistimen eteen.
II	Tyhjän MathPrint™-mallin paikanpitäjäruutu. Voit siirtyä ruudun sisään nuolinäppäimillä.
	MathPrint™-kohdistin. Jatka syöttämistä nykyiseen MathPrint™-malliin tai poistu mallista näppäimellä).

Kakkostoiminnot

2nd

Useimmilla näppäimillä on yhtä useampi toiminto. Ensisijainen toiminto on merkitty näppäimeen ja toissijainen näppäimen yläpuolelle. Voit aktivoida toissijaisen toiminnon painamalla 2nd-näppäintä. Huomaa, että näytössä näkyy ilmaisin 2ND. Voit peruuttaa toiminnon ennen seuraavan näppäimen painamista painamalla uudelleen 2nd-näppäintä. Esimerkiksi näppäimet 2nd [v-] 25 enter laskevat luvun 25 neliöjuuren ja antavat vastaukseksi 5.

Tilat

mode

Tilat valitaan näppäimellä \boxed{mode} . Vie kohdistin tilan kohdalle näppäimillä $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ ja valitse se näppäimellä \boxed{enter} . Palaa perusnäyttöön näppäimellä \boxed{clear} tai $\boxed{2nd}$ \boxed{quit} ja suorita tehtävä valitsemasi tilan asetuksilla.

Oletusasetukset näkyvät korostettuina alla olevissa esimerkkinäytöissä.

DEGREE RADIAN GRADIAN – Asettaa kulmatilaksi asteet, radiaanit tai graadit.

NORMAL SCI ENG – Asettaa numeerisen merkintätavan. Numeerisen merkintätavan asetukset vaikuttavat ainoastaan vastausten näyttöön eivätkä siis laskimeen tallennettujen arvojen tarkkuuteen, jotka pysyvät maksimiarvoissaan.

NORMAL näyttää vastaukset siten, että numeroita on desimaalipisteen vasemmalla ja oikealla puolella, esimerkiksi 123456.78.

SCI näyttää vastaukset siten, että desimaalipisteen vasemmalla puolella on yksi numero ja näkyvissä on luvun 10 potenssi, esimerkiksi 1.2345678E5. Tämä vastaa arvoa (1.2345678×10⁵), jossa on mukana laskutoimituksen suoritusjärjestyksen ilmaisevat sulkeet.

ENG näyttää vastaukset lukuna väliltä 1–999 kertaa 10 korotettuna kokonaisluvun potenssiin. Kokonaisluvun potenssi on aina kolmella jaollinen.

Huomaa: [EE] on pikavalintanäppäin, jolla luku voidaan syöttää kymmenpotenssimuodossa. Vastaus näkyy tilavalikosta valitulla numeerisella esitystavalla.

FLOAT 0123456789 – Asettaa desimaalien esitystavan.

FLOAT (liukuva desimaalipiste) näyttää enintään 10 numeroa plus etumerkin ja desimaalipisteen.

0 1 2 3 4 5 6 7 8 9 (kiinteä desimaalipiste) määrittää, kuinka monta numeroa (0–9) näkyy desimaalipisteen oikealla puolella.

REAL a+bi $r \angle \theta$ – Asettaa kompleksilukujen vastausten muodon.

REAL reaalilukuvastaukset

a+bi vastaukset ovat suorakulmamuodossa

 $\mathbf{r} \angle \boldsymbol{\theta}$ vastaukset ovat napakoordinaattimuodossa

DEC HEX BIN OCT – Asettaa laskutoimituksissa käytettävän kantaluvun.

DEC desimaali

HEX heksadesimaali (heksaluvut A–F syötetään näppäimillä 2nd [A], 2nd [B] jne.)

BIN binaariluku

OCT oktaaliluku

MATHPRINT CLASSIC

MATHPRINT-tilassa useimmat syötteet ja vastaukset näkyvät oppikirjamuodossa.

Esimerkkejä MathPrint™- ja Classic-tiloista

MathPrint [™] -tila	Classic-tila
Sci	Sci
12345 1.2345E4	12345 1.2345E4
Float-tila (liukuva desimaalipiste) ja vastausmuodon vaihtonäppäin	Float-tila (liukuva desimaalipiste) ja vastausmuodon vaihtonäppäin
	1/8. 0.125
Fix 2 (kiinteä desimaalipiste) ja vastausmuodon vaihtonäppäin $2\pi^{\text{FIX}}$ $2\pi^{\text{CCC}}$ $2\pi^{\text{CCC}}$ 6.28	Fix 2 (kiinteä desimaalipiste) $2\pi^{\text{FIR}}$ 6.28
Un/d 45	Un/d-syöte 4⊔5∕9 ^{DEG} 41∕9
Esimerkki potenssista	Esimerkki potenssista
2 ⁵ 32	2^5 <u>32</u>
Esimerkki neliöjuuresta	Esimerkki neliöjuuresta
√2 √2 ↓2 √2 ↓ 1.414213562	√(2). 1.414213562
Esimerkki kuutiojuuresta	Esimerkki kuutiojuuresta

MathPrint [™] -ti	ila		Classic-tila		
³ √64	DEG	4	3×164	DEG	4

Monipainallusnäppäimet

Monipainallusnäppäin vaihtaa kiertäen toiminnosta toiseen painettaessa näppäintä uudelleen. Voit lopettaa monipainallustoiminnon painamalla näppäintä .

Esimerkiksi näppäin 📰 sisältää trigonometriset funktiot sin ja sin⁻¹ sekä hyperboliset funktiot sinh ja sinh⁻¹. Painamalla näppäintä toistuvasti saat näkyviin syötettävän funktion.

Monipainallusnäppäimiä ovat $\overline{x_{zzz}^{sz}}$, \overline{sn} ,

Valikot

Valikoista pääset moniin laskimen toimintoihin. Joillakin valikon näppäimillä, esimerkiksi [2nd] [recall], avautuu yksi valikko. Toisilla taas, esimerkiksi [math], avautuu useita valikoita.

Siirry valikon kohtaan ja tee valinta näppäimillä) ja ⊙ tai paina valikon kohdan vieressä olevaa vastaavaa numeroa. Voit palata edelliseen näyttöön valitsematta valikon kohtaa painamalla näppäintä dear. Voit sulkea valikon ja palata perusnäyttöön näppäimillä 2nd [quit].

[2nd [recall] (yhden valikon avaava näppäin):

RECALL VAR (hae muuttuja)

1:x = 0 2:y = 0 3:z = 0 4:t = 0 5:a = 0 6:b = 0 7:c = 0 8:d = 0

[math] (useita valikoita avaava näppäin):

MATH	NUM	DMS	R⁴⋫P
1:▶n/d�▶Un/d	1:abs(1:°	1:P ▶ Rx(
2:lcm(2:round(2:'	2:P ▶ Ry(
3:gcd(3:iPart(3:″	3:R ▶ Pr(

MATH	NUM	DMS	R♣₽
4:▶Pfactor	4:fPart(4:r	4:R ▶ Pθ(
5:sum(5:int(5:g	
6:prod(6:min(6:▶DMS	
7:nDeriv(7:max(
8:fnInt(8:mod(

Esimerkkejä

Joidenkin kappaleiden lopussa on ohjeet näppäimillä suoritettavista TI-30X Pro MathPrint™ toiminnoista.

Huomaa:

- Ellei toisin ole mainittu, esimerkeissä on käytetty tilojen oletusasetuksia, jotka on kuvattu kappaleessa Tilat.
- Voit tyhjentää perusnäytön tarpeen mukaan Clear näppäimellä.
- Jotkin näytön elementit saattavat olla erilaisia kuin tässä oppaassa.
- Koska ohjattujen toimintojen muisti pysyy tallessa, jotkin näppäilyt voivat olla erilaisia.

Lausekkeiden ja historiatietojen selaaminen

$\odot \odot \odot \odot$

Siirrä kohdistin näppäimellä () tai () syötettävän tai muokattavan lausekkeen sisälle. Voit siirtää kohdistimen suoraan lausekkeen alkuun tai loppuun näppäimillä () tai (2nd ().

Kun näppäintä ⊙ painetaan lausekkeen syötön tai muokkauksen aikana, se siirtää kohdistimen historiatietoihin. Kun enter-näppäintä painetaan historiatietojen syötteissä tai vastauksissa, vastaava lauseke palautuu muokkausriville kohdistimen kohdalle.

Esimerkki

7 <u>x</u> ² – 4 (3) (1) enter	7 ² -4(3)(1)	37
[r] ⊙ ⊙ enter	$7^{2}-4(3)(1)$	37
enter	$\sqrt{7^{2}-4(3)(1)}$	137

Vastauksen vaihtaminen

(+ ≈

Näppäimellä •= voit (mikäli mahdollista) vaihtaa vastausta murtoluku- ja desimaalimuodon, tarkan neliöjuuren ja desimaalimuodon ja tarkan piin ja desimaalimuodon välillä.

Esimerkki

⊕ <i>≊</i>	<u>18</u> 2√2+	2\12 2_828427125

Huomaa: Näppäimellä •= voi vaihtaa myös funktiotaulukon ja dataeditorin solujen sisältämien arvojen lukumuotoja. Vaihdetut solujen arvot näkyvät esimerkiksi matriisi-, vektori- ja yhtälönratkaisueditoreissa.

Viimeinen vastaus

2nd [answer]

Perusnäytön viimeinen syöte tallentuu ans-muuttujaan. Muuttujan arvo pysyy muistissa myös laskimen sammuttamisen jälkeen. Voit hakea ans-muuttujan arvon seuraavasti:

- Paina näppäimiä 2nd [answer] (ans näkyy näytössä), tai
- Voit syöttää laskun ensimmäisen osan useimmilla syöttöriveillä painamalla jotakin laskutoimitusnäppäintä ((+, - jne.). Sekä ans että operaattori näkyvät näytössä.

Esimerkkejä

ans	3 × 3 enter	3*3	DEG •

X 3 enter	3*3 ans*3	DEG	9 27
3 [2nd] [°] [2nd] [answer] [enter]	3*3 ans*3 ∛ans	DEG	9 27 3

Huomaa: ans-muuttuja tallennetaan ja liitetään täydellä 13 merkitsevän numeron tarkkuudella.

Laskutoimitusten järjestys

TI-30X Pro MathPrint[™] -laskin sieventää lausekkeet yhtälökäyttöjärjestelmän (EOS[™]) mukaisesti. EOS[™]-järjestelmän prioriteettijärjestyksen mukaisesti laskutoimitukset lasketaan vasemmalta oikealle seuraavassa järjestyksessä:

1.	Sulkeissa olevat lausekkeet		
2.	Argumenttia edeltävät funktiot, joissa tarvitaan merkki), kuten sin, log, sekä kaikki R↔P -valikon kohdat.		
3.	Argumentin jälkeen syötettävät funktiot, kuten x ² , sekä kulmayksiköiden määreet		
4.	Potenssiin korotus (^) ja juuret (x) Huomaa: Classic-tilassa eksponenttilauseke, jossa eksponentti on syötetty näppäimellä x° , lasketaan vasemmalta oikealle. Lauseke 2^3^2 lasketaan kuten (2^3)^2, ja sen vastaus on 64. 2^3^2 64		
	MathPrint [™] -tilassa eksponenttilauseke, jossa eksponentti on syötetty näppäimellä <u>x</u> [®] , lasketaan oikealta vasemmalle. Lauseke 2^3^2 lasketaan kuten 2^(3^2), ja sen vastaus on 512. 2 ^{3²} 512		
	Laskin laskee lausekkeet, joissa on käytetty näppäimiä <u>x</u> ² ja [≟], vasemmalta oikealle sekä Classic- että MathPrint™-tilassa. Syöte 3 <u>x</u> ² <u>x</u> ² lasketaan kuten (3 ²) ² = 81.		

5.	Negaatio (-)
6.	Murtoluvut
7.	Permutaatiot (nPr) ja kombinaatiot (nCr)
8.	Kertolasku, implikoitu kertolasku, jakolasku ja kulman merkki ∠
9.	Yhteen- ja vähennyslasku
10.	Loogiset operaattorit and, nand
11.	Loogiset operaattorit or, xor, xnor
12.	Muunnokset, kuten ▶n/d4> Un/d, F4> D, ▶DMS
13.	sto→
14.	enter sieventää syötetyn lausekkeen.

Huomaa: Lausekkeen lopun operaattorit ja kantaluvun n muunnokset, kuten ▶Bin, kulman muunnos ▶DMS, ▶Pfactor sekä kompleksiluvun muunnokset ▶Polar ja ▶Rectangle kelpaavat vain perusnäytöllä. Niitä ei huomioida ohjatuissa toiminnoissa, funktiotaulukkonäytössä eikä dataeditorin toiminnoissa, joissa lausekkeen tulos, mikäli kelvollinen, näkyy ilman muunnosta. Näitä lausekkeen lopussa olevia operaattoreita ei huomioida myöskään muokkausrivillä editoreissa, kuten matriisi-, vektori- ja yhtälönratkaisueditoreissa.

Huomaa: Ilmaise syöttämäsi lausekkeen laskutoimitusten suoritusjärjestys selkeästi sulkeiden avulla. Sulkeiden avulla voidaan tarvittaessa kumota laskimen algoritmien noudattama laskutoimitusten suoritusjärjestys. Jos vastaus ei ole odotusten mukainen, tarkista miten lauseke on syötetty ja lisää tarvittaessa sulkeita.

Esimerkkejä

+ x ÷ -	60 + 5 × → 12 enter	60+5* ⁻ 12 0€ 0)
(-)	1 + () 8 + 12 enter	1+-8+12 ⁵⁶⁶ Š	5
√ ja +	2nd [~] 9 + 16 enter	√9+16 [™]	5
()	4 🗙 (2 + 3) enter	4*(2+3) ^{Deg} 20)

() ja +	4 (2 + 3) enter	4(2+3)	DEG	2ď
^ ja √	2nd [√] 3 <u>x</u> ⁿ 2 () + 4 <u>x</u> ⁿ 2 enter	$\sqrt{3^2+4^2}$	DEG	5
() ja -	((-) 3)) x ² enter () 3 x ² enter	(-3) ² -3 ²	DEG	9 -9

Tyhjentäminen ja korjaaminen

[التنبي]	Delevittee heldisting on new ordinatille
	Palauttaa kondistimen perusnaytolle.
	Sulkee nopeasti seuraavat sovellukset: lausekkeen sieventäminen, sarjalaskutoimitukset, funktiotaulukko, dataeditori, tilastot, jakaumat, vektori, matriisi, numeerinen ratkaisu, polynomien ratkaisu ja yhtälönratkaisu.
clear	Poistaa virheilmoituksen.
	Tyhjentää merkit syöttöriviltä.
delete	Poistaa merkin kohdistimen kohdalta.
	Kun kohdistin on lausekkeen lopussa, poistaa edeltävän merkin (askelpalautin).
2nd [insert]	Lisää merkin kohdistimen kohdalle.
2nd [clear var] 1	Tyhjentää muuttujat x, y, z, t, a, b, c ja d palauttaen ne oletusarvoon 0.
	Lasketut tilastomuuttujat eivät ole enää käytettävissä Stat Vars -valikossa. Laske tilastot tarvittaessa uudelleen.
2nd [reset] 2	Palauttaa laskimen tehdasasetuksiin.
	Palauttaa laskimen oletusasetukset, tyhjentää muistimuuttujat, ratkaisemattomat laskutoimitukset, kaikki historiasyötteet ja tilastotiedot; tyhjentää kaikki tallennetut laskutoimitukset sekä ans -muuttujan arvon.

Muisti ja tallennetut muuttujat

 $\begin{array}{c} x_{abcd}^{yzt} \\ \hline \text{sto} \rightarrow \end{array} \quad \begin{array}{c} \text{2nd} \\ \hline \text{[recall]} \\ \hline \text{2nd} \\ \hline \text{[clear var]} \end{array}$

TI-30X Pro MathPrint[™] -laskimessa on kahdeksan muistimuuttujaa – **x**, **y**, **z**, **t**, **a**, **b**, **c** ja **d**. Muuttujien arvoiksi voi tallentaa:

- reaali- tai kompleksilukuja
- lausekkeiden vastauksia
- eri sovellusten, kuten Jakaumat-sovelluksen, laskutoimituksia
- dataeditorin solujen arvoja (tallennettu muokkausriviltä).

Muuttujia käyttävissä laskimen toiminnoissa käytetään muuttujiksi tallentamiasi arvoja.

Voit tallentaa arvoja muuttujiin näppäimellä \underline{sto} . Aloita muuttujan tallennus painamalla näppäintä \underline{sto} ja valitse tallennettava muuttuja painamalla näppäintä $\frac{x_{sted}^{xs}}{x_{sted}^{xs}}$. Tallenna arvo valittuun muuttujaan näppäimellä [enter]. Jos kyseisellä muuttujalla on jo arvo, uusi arvo korvaa entisen arvon.

 $\frac{x_{stcd}^{**}}{x_{stcd}^{*}}$ on monipainallusnäppäin, joka selaa läpi muuttujanimet **x**, **y**, **z**, **t**, **a**, **b**, **c** ja **d**. Lisäksi näppäimellä $\frac{x_{stcd}^{**}}{x_{stcd}^{**}}$ voi hakea näiden muuttujien tallennetut arvot. Syötteeseen lisätään muuttujan nimi, mutta lausekkeen ratkaisemisessa käytetään muuttujalle määritettyä arvoa. Voit syöttää kaksi tai useampia muuttujia peräkkäin painamalla näppäintä) kunkin muuttujan jälkeen.

Näppäimillä [2nd] [recall] haetaan muuttujien arvot. Avaa muuttujien valikko ja muuttujiin tallennetut arvot painamalla näppäimiä [2nd] [recall]. Valitse haettava muuttuja ja paina näppäintä [enter]. Muuttujan arvo lisätään syötteeseen ja arvoa käytetään lausekkeen ratkaisemisessa.

[2nd] [clear var] tyhjentää muuttujien arvot. Jos haluat tyhjentää kaikkien muuttujien arvot, paina näppäimiä [2nd] [clear var] ja valitse **1:Yes**. Lasketut tilastomuuttujat eivät ole enää käytettävissä Stat Vars -valikossa. Laske tilastot tarvittaessa uudelleen.

Esimerkkejä

Aloita tyhjältä näytöltä	[2nd] [quit] [clear]	DEG
Clear Var (tyhjennä muuttuja)	2nd [clear var] 1 (valitsee vaihtoehdon Yes)	CLEAR VAR 1:Yes 2:No
Store (tallenna)	15 sto+ x_{abcd}^{zzt}	15→ <i>x</i>

	enter	15→x 	15
Recall (hae)	[2nd] [recall]	RECALL VAR 1 = x=15 2: y=0 3↓z=0	
	enter x^2 enter	15→x 15 ²	15 225
	sto $\rightarrow x_{abcd}^{yzi} x_{abcd}^{yzi}$	15→x 15² ans→y	15 225
	enter	15→x 15² ans→y	15 225 225
	$\overline{x_{abcd}^{yzt}} \ \overline{x_{abcd}^{yzt}}$	בסד <i>יג</i> 15 ² ans≁y y	ີ່ 13 225 225
	enter ÷ 4 enter	15 ⁻ ans→y y ans∕4	225 225 225 56.25

Tehtävä

Soranottopaikalla on avattu kaksi uutta kaivosta. Toisen kaivoksen mitat ovat 350 x 560 metriä ja toisen 340 x 610 metriä. Minkä verran soraa yrityksen on kaivettava kummastakin kaivoksesta, jotta tullaan 150 metrin syvyyteen? Entä 210 metrin syvyyteen? Näytä vastaukset SI-kerrannaisten esitystavalla.

mode \odot \odot enter clear 350 × 560 sto+ x_{abcd}^{zzt} enter	350*560 → x	196Ē3

340 \times 610 sto+ x_{abcd}^{yzt} x_{abcd}^{yzt} enter	350*560→x 196ē3 340*610→y 207.4e3
Clear 150 🛛 2nd [recall]	RECHLEVER 1. x=196e3 2: y=207.4e3 3↓z=0e0
enter enter	150*196000 29.4е6
Clear 210 × 2nd [recall] enter enter	210*196000 41.16E6

Yrityksen on kaivettava ensimmäisestä kaivoksesta 29,4 miljoonaa kuutiometriä, jotta päästään 150 metrin syvyyteen, ja 41,16 miljoonaa kuutiometriä, jotta päästään 210 metrin syvyyteen.

Clear 150 \times x_{abcd}^{yet} x_{abcd}^{yet} enter	150*y	31.11e6
210 \times $\overline{x_{abcd}^{yzt}}$ $\overline{x_{abcd}^{yzt}}$ enter	150*у 210*у	31.11e6 43.554e6

Yrityksen on kaivettava toisesta kaivoksesta 31,11 miljoonaa kuutiometriä, jotta päästään 150 metrin syvyyteen, ja 43,554 miljoonaa kuutiometriä, jotta päästään 210 metrin syvyyteen.

Matemaattiset funktiot

Tässä kappaleessa käsitellään laskimen matemaattisten funktioiden käyttöä. Näitä ovat esimerkiksi trigonometriset funktiot, tilastot ja todennäköisyyslaskut.

Murtoluvut

 $\begin{array}{c} \hline \\ \hline \\ \end{array} \qquad \begin{array}{c} 2nd \begin{bmatrix} \Box \\ \hline \\ \end{array} \\ \begin{array}{c} math \end{array} 1 \qquad \begin{array}{c} 2nd \begin{bmatrix} f \checkmark \flat d \end{bmatrix} \end{array}$

Näppäimellä 🗄 syötetyt murtoluvut voivat sisältää reaali- ja kompleksilukuja, laskutoimitusnäppäimiä ([+], ⊠ jne.) ja useimpia funktionäppäimiä ([x²], [2nd [%] jne.).

Classic-tilassa tai MathPrint[™]-tilassa syötetyissä Classic-tilan syötteissä murtoviiva näkyy rivillä paksuna viivana, esimerkiksi gyg. Ilmaise sulkeiden avulla tarkasti haluamasi laskutoimitus. Vaikka laskutoimitusten järjestyssäännöt ovat voimassa, sinun on määritettävä, miten lasku lasketaan, sijoittamalla syötteisiin sulkeet.

Murtolukuvastaukset

- Murtolukuvastaukset sievennetään automaattisesti, ja vastaus on epämurtolukumuodossa.
- Vastaukset ovat murtolukumuodossa, kun laskettu arvo voi näkyä laskimen tukeman murtolukumuodon rajoissa eikä lausekkeeseen ole syötetty desimaalilukuja.
- Jos desimaalilukuja on syötetty tai laskettu murtoluvun nimittäjään tai osoittajaan, vastaus näkyy desimaalilukuna. Desimaaliluvun syöttäminen pakottaa vastauksen näkymään desimaalimuodossa.
- Käytä vastauksissa näppäimiä 2nd [f ↔ d] (edellä (↔ z) muuntaaksesi murtoluvun desimaaliluvuksi tämän numeerisen laskimen murtolukujen näyttörajoitusten sisällä.

Sekaluvut ja muunnokset

- Näppäimillä 2nd [□=] syötetään sekaluku. Nuolinäppäimillä voi siirtyä yksiköstä osoittajaan ja nimittäjään.
- Näppäimet math 1 muuntavat yksinkertaisten murtolukujen ja sekalukujen välillä (▶n/d+>Un/d).
- [refearched] muuntaa vastaukset murtolukujen ja desimaalilukujen välillä.

MathPrint[™]-syöte

- Voit siirtää kohdistinta osoittajan ja nimittäjän välillä näppäimellä ⊙ tai ⊙.
- Jos painat näppäintä 🗄 lukujen tai funktioiden edellä tai jälkeen, osa lausekkeesta voi kopioitua osoittajaan. Seuraa näyttöä painaessasi näppäimiä, jotta syötät lausekkeen varmasti oikein.

Perusnäytössä

- Voit liittää aikaisemman syötteen historiatiedoista osoittajaan tai sekalukuosaan asettamalla kohdistimen osoittajan tai osan kohdalle, siirtymällä halutun syötteen kohdalle näppäimellä i ja liittämällä syötteen lopuksi osoittajaan tai osaan näppäimellä enter.
- Voit liittää aikaisemman syötteen historiatiedoista nimittäjään asettamalla kohdistimen nimittäjään ja hyppäämällä historiatietoihin näppäimillä 2nd ②. Siirry halutun syötteen kohdalle näppäimellä ④ ja liitä syöte nimittäjään painamalla enter)-näppäintä.

Lausekkeen sievennys

 Kun sievennät syöttämäsi lausekkeen painamalla [enter]-näppäintä, näkyviin voivat tulla sulkeet, jotka ilmaisevat tarkasti, miten laskin on tulkinnut ja laskenut lausekkeen. Jos laskutoimitus ei ole halutun mukainen, kopioi syötetty lauseke ja muokkaa sitä tarpeen mukaan.

Classic-tila tai Classic-syöte

 Jos kohdistin on Classic-syötteen kohdalla, syötä osoittajalauseke sulkeiden sisällä, ota sen jälkeen paksu murtoviiva näkyviin näppäimellä 📳 ja syötä lopuksi nimittäjälauseke myös sulkeiden sisällä, jotta vastaus lasketaan tehtävän edellyttämällä tavalla.

n/d, Un/d		$\frac{\frac{3}{4}+\left(1\frac{7}{12}\right)}{\frac{7}{3}}$
▶n/d◀▶Un/d	9 🗄 2 () math 1 enter	⁹ 2 ▶n∕d⊕Un∕d 4 ¹ / ₂
f ₩d	4 2nd [□] 1 ⊙ 2 () 2nd [f + ► d] enter	4½) f + d 4.5
Esimerkki	∃ 1.2 + 1.3 ◆ 4 enter Huomaa: Vastaus on desimaaliluku, koska murtoluvussa on käytetty desimaalilukuja.	1.2+1.3 4 Ø.625

Esimerkkejä MathPrint™-tilassa

Esimerkki	$\begin{array}{c} \textcircled{b}{$ [-]$ 5 + 2nd [-]$}\\ 5 & \swarrow^2 - 4 (1) \\ \hline 6) \textcircled{o}{$ 2 (1 $}\\ \hline enter \end{array}$	-5+\5 ² -4(1)(6) 2(1)	2

Esimerkkejä Classic-tilassa

n/d, Un/d	3 ⊕ 4 + 1 2nd [□⊕] 7 ⊕ 12 enter	3/4+1.7/12 7/3
▶n/d4∙Un/d	9 🗄 2 (math) 1 (enter)	9 / 2▶n/d∾Ün/d 4⊔1 / 2
f∢▶d	4 [2nd [□∄] 1 ∄ 2 [2nd [f ◀ ▶ d] enter	4⊔1∕2▶f⇔d 4.5
Sulkeet	$(2x^{2} - 1) = (2x^{2} + 1) = (2x^{2} + 1)$	(2 ² -1)/(2 ² +1) 3/5

Kymmenpotenssimuoto [EE]

EE

[EE] on pikavalintanäppäin, jolla luku voidaan syöttää kymmenpotenssimuodossa. Luku, esimerkiksi (1.2 x 10⁻⁴), syötetään laskimeen lukuna 1.2E-4.

Esimerkki

2 EE 5 enter Huomaa: Syöttää (2 x 10 ⁵) käyttäen laskimen E -merkintätapaa.	2e5 [™] 200000
mode ⊙ () enter Huomaa: SCI-tilassa vastaukset näytetään kymmenpotenssimuodossa.	SCI DEG DEG333 RADIAN GRADIAN NORMAL SOOI ENG IIIII 0 1 2 3 4 5 6 7 8 9 RECI 0 + bi r∠0

(Clear) [enter]	2ε5 [€] 200000 2ε5 2ε5
Clear 4 EE 2 × 6 EE (4e2*6e ⁻¹ 2.4e2
 B 5 EE 3 ⊙ 2 EE 4 enter 2nd [answer] 2nd [f → d] 	5E3 2E4 ans▶f∿d 2.5e-1

Esimerkki

Oppikirjatehtävä dear $(5 \times 10 x^{\circ} 3 \oplus) \div (2 \times 10 x^{\circ} 4 \oplus)$ enter	(5*10 ³)/(2*10 ⁴) 2.5e-1
Käytetään EE - merkintätapaa Clear 5 EE 3 ÷ 2 EE 4 enter	5e3/2e4 2.5e-1

Potenssit, neliöjuuret ja käänteisfunktiot

<i>x</i> ²	Laskee luvun neliön
x□	Korottaa luvun ilmaistuun potenssiin Siirrä kohdistin pois potenssimerkinnästä MathPrint™- tilassa näppäimellä ().
2nd [~]	Laskee ei-negatiivisen luvun neliöjuuren. Kompleksilukutiloissa a+bi ja r∠θ laskee negatiivisen reaaliluvun neliöjuuren.
2nd ["v-]	Laskee minkä tahansa ei-negatiivisen luvun x:nnen juuren ja negatiivisen luvun minkä tahansa parittoman kokonaisluvun juuren.
[=]	Laskee syötetyn arvon käänteisluvun muodossa 1/x.

Esimerkkejä

$5 x^2 + 4 x^2 + 1$ () enter	5 ² +4 ²⁺¹	DEG	89
10 x ⁻ () 2 enter	10 ⁻²	DEG	<u>1</u> 100
2nd [√] 49 enter	149	DEG	7
2nd [v] 3 <u>x</u> ² + 2 <u>x</u> ⁰ 4 enter	√3 ² +2 ⁴	DEG	5
6 2nd [~] 64 enter	¶64	DEG	2
3 [enter] [2nd] [[†] ₀] [enter]	$\frac{3}{\frac{1}{ans}}$	DEG	13 13 3

Pi (pi-symboli)

 $[\pi_i^{e}]$ (monipainallusnäppäin)

 $\pi \approx 3.14159265359$ laskutoimituksissa

 $\pi \approx 3.141592654$ näytössä liukuvan desimaalipisteen tilassa.

Esimerkki

·ππ

Tehtävä

Mikä on ympyrän pinta-ala, jos säde on 12 cm?

Muistutus: A = $\pi \times r^2$

π^{e} × 12 x^{2} enter	. D	EG ▲★
	$\pi * 12^2$	144π
	452.	3893421

Ympyrän pinta-ala on 144 π neliösenttimetriä. Ympyrän pinta-ala on noin 452,4 neliösenttimetriä pyöristettynä yhden desimaalin tarkkuudelle.

Matematiikka

math MATH

math avaa MATH-valikon:

1:▶n/d4▶Un/d	Muuntaa yksinkertaisten murtolukujen ja sekalukujen välillä.	
2:lcm(Pienin yhteinen jaettava	
	Syntaksi: Icm(arvoA,arvoB)	
3:gcd(Suurin yhteinen tekijä	
	Syntaksi: gcd(arvoA,arvoB)	
4:▶Pfactor	Jaottomat tekijät	
5:sum(Yhteenlasku	
	Syntaksi: sum(lauseke,muuttuja,alaraja,yläraja)	
	(Classic-tilan syntaksi)	
6:prod(Tulo	
	Syntaksi: prod(<i>lauseke,muuttuja,alaraja,yläraja</i>) (Classic-tilan syntaksi)	
7:nDeriv(Numeerinen derivaatta pisteessä valinnaisella toleranssiargumentilla, ε, kun komentoa käytetään Classic-tilassa, Classic-syötteenä ja MathPrint™- tilassa.	
	Syntaksi: nDeriv(lauseke,muuttuja,piste [,toleranssi])	
	(Classic-tilan syntaksi)	

8:fnInt(Lukuvälin numeerinen integraali valinnaisella toleranssiargumentilla, ε, kun komentoa käytetään Classic-tilassa, Classic-syötteenä ja MathPrint™- tilassa.
	Syntaksi: fnint(<i>lauseke,muuttuja,alaraja,yläraja</i> [<i>,toleranssi</i>]) (Classic-tilan syntaksi)

Esimerkkejä

▶n/d4▶Un/d	9 🗄 2 🕐 math 1 enter	⁹ / ₂ ▶ n/d+Un/d 4 ¹ / ₂
lcm(math 2	$1_{\text{Cm}}(6,9) \stackrel{\text{Des}}{1}$
	6 [2nd] [,] 9 [) [enter]	1011(0,9) 10
gcd(math 3 18 [2nd [,] 33 [) [enter]	acq(18,33) 3
▶Pfactor	253 (math) 4 (enter	253▶Pfactor 11*23
sum($\begin{bmatrix} \text{math} & 5 \\ 1 \bigoplus 4 \bigoplus \mathbf{x}_{abcd}^{xee} \end{bmatrix} \times 2$ enter	$\sum_{\substack{\lambda=1\\ x=1}}^{4} (x*2) 20$
prod(math 6 1 () 5 () 1 () x_{abcd}^{yet} () () enter	$\begin{bmatrix} 5\\ \Pi\\ x=1 \end{bmatrix} \begin{pmatrix} \frac{1}{x} \end{pmatrix} \begin{bmatrix} 1\\ \frac{1}{20} \end{bmatrix}$

Huomaa: Esimerkkejä ja lisätietoja on matemaattisten funktioiden kohdassa Numeerinen derivointi, nDeriv(ja Numeerinen integrointi, fnInt(.

Numerofunktiot

math NUM

math () avaa NUM-valikon:

1:abs(

Itseisarvo

	Syntaksi: abs(arvo)
2:round(Pyöristetty arvo
	Syntaksi: round(<i>arvo,#desimaalia</i>)
3:iPart(Luvun kokonaisosa
	Syntaksi: iPart(arvo)
4:fPart(Luvun murto-osa
	Syntaksi: fPart(arvo)
5:int(Suurin kokonaisosa, joka on ≤ luku
	Syntaksi: int(arvo)
6:min(Kahden luvun minimi
	Syntaksi: min(<i>arvoA</i> , <i>arvoB</i>)
7:max(Kahden luvun maksimi
	Syntaksi: max(<i>arvoA</i> , <i>arvoB</i>)
8:mod(Modulo (jakojäännös, joka saadaan, kun lasketaan ensimmäinen luku ÷ toinen luku)
	Syntaksi: mod(<i>jaettava,jakaja</i>)

Esimerkkejä

abs([math] () 1 [(−)] [2nd] [√−] 5 [enter]	-12 ा <u>र</u>
round(math () 2 1.245 2nd [,] 1 enter () () () () () () () 5	round(1.245,1) 1.2 round(1.255,1) 1.3
iPart(fPart(4.9 sto \rightarrow x_{abcd}^{zzz} enter math (•) 3 x_{abcd}^{zzz} (•) enter math (•) 4 x_{abcd}^{zzz} (•) enter	4.9 $\rightarrow x$ iPart(x) fPart(x) 0.9
int((math) () 5 () 5.6 () enter	int(-5.6) -6

min(math () 6 4 [2nd] [,] () 5 enter () 7 math () 7 .6 2nd [,] .7 ()	min(4,⁻5)	- <u>5</u>
max(max(.6,.7)	0.7
mod(math () 8 17 2nd [,] 12) enter (•) (•) (•) (•) 6 enter (•) (•) 6	mod(17,12) mod(17,16)	- 5 1

Kulmat

math DMS

Näppäimillä math)) ()) avataan DMS-valikko:

1:°	Määrittää kulmayksiköksi asteet (°).
2:'	Määrittää kulmayksiköksi minuutit (').
3:″	Määrittää kulmayksiköksi sekunnit (").
4:r	Määrittää kulmayksiköksi radiaanin.
5:g	Määrittää kulmayksiköksi graadin.
6:▶DMS	Muuntaa kulman desimaaliasteista asteiksi, minuuteiksi ja sekunneiksi.

Valitse kulmatila tilanäytöltä. Vaihtoehdot ovat oletusarvoinen DEGREE (aste), RADIAN (radiaani) tai GRADIAN (graadi). Syötteet tulkitaan ja vastaukset näytetään kulmatilan asetuksen mukaisesti tarvitsematta syöttää kulman yksikköä.

Esimerkkejä

RADIAN (radiaani)	mode () enter	DEGREE REDUCTIN GRADIAN NORMAN SCI ENG SCI ENG RECOTI 0 1 2 3 4 5 6 7 8 9 RECU a+bi r∠0
	Clear Sin 30 (math) ()	MATH NUM DMS 1880° 2:' 3↓"
	1)) [enter]	sin(30°) $\frac{1}{2}$

DEGREE (aste)	(mode) enter	DECTREE RADIAN NORMAL SCI ENG ELOCTI 0 1 2 3 4 5 6 7 8 9 REAL a+bi r∠0
	Clear 2 $[\overline{\pi}_{i}^{e}]$ math () () 4 enter	sin(30°) ^{μες} <u>1</u> 2π ^r 360
▶DMS	1.5 math () () 6 enter	sin(30°) [™] 1/2 2π ^r 360 1.5≻DMS 1°30'0"

Tehtävä

Kahden vierekkäisen kulman mitat ovat 12° 31′ 45″ ja 26° 54′ 38″. Laske kulmat yhteen ja näytä vastaus DMS-muodossa. Pyöristä vastaukset kahden desimaalin tarkkuudelle.

clear mode \odot \odot $()$ $()$ enter	F#A DICINE NORMAN SCI ENG FLOAT 0 1 23 4 5 6 7 8 9 REAL a+bi r∠0 ↓
clear 12 math () ()	MATH NUM DMS 2:' 3↓"
1 31 math () () 2 45 math () () 3 + 26 math () () 1 54 math () () 2 38 math () () 3 enter	12 ^{°™} 31'45 [™] +26°54) 39.44
math () () 6 enter	12°31'45"+26°54) 39.44 ans⊁DMS 39°26'23"

Vastaus on 39 astetta, 26 minuuttia ja 23 sekuntia.

Tehtävä

Tiedetään, että 30° = π / 6 radiaania. Määritä asteiden oletustilassa kulman 30° sini. Aseta laskin sen jälkeen radiaanitilaan ja laske kulman π / 6 radiaania sini.

Huomautuksia

- Tyhjennä näyttö tehtävien välillä Clear näppäimellä.
- Osoitinrivillä näkyy DEG- tai RAD-tilan asetus vain kyseiselle laskutoimitukselle.

Clear (sin) 30 () (enter	sin(30)	1 2
mode (enter) (enter) $\mathfrak{g}(\mathfrak{m})$ $\mathcal{T}_{i}^{\mathfrak{m}}$ \mathfrak{B} 6 (f) (f) enter	sin(30) sin(1 6)	1212

Säilytä laskimessa radiaanitila ja laske kulman 30° sini. Vaihda laskin astetilaan ja laske kulman π / 6 radiaania sini.

Clear sin-1 30 math () () enter () enter	sin(30°)	1 1 2
mode enter clear	sin[#r]	1/2
sin-1 <u>π</u> e b math b 4		-
) enter		

Trigonometria

sin-1 cos-1 tan-1 (monipainallusnäppäimet)

Painamalla toistuvasti jotakin näistä monipainallusnäppäimistä pääset vastaavaan trigonometriseen funktioon tai trigonometriseen käänteisfunktioon. Aseta kulmatila – Degree tai Radian – ennen laskutoimituksen suorittamista.

Esimerkki Degree-tilassa

tan	clear mode enter [m] 45	tan(45)	DEG 1
tan-1	Clear [tan-] [tan-] 1]) enter	tan¹(1)	4 5

COS	clear 5 × [cos-] 60)	5*cos(60)	<u>5</u> 2

Esimerkki Radian-tilassa

tan	clear mode () enter clear image π° π° π° enter ()	tan($\frac{\pi}{4}$) 1
tan-1	Clear	tan-1(1)
	◆ <i>≈</i>	tan¹(1) मुँ मुँ
COS	clear 5 × ∞ π i 0 enter	$5*\cos\left(\frac{\pi}{4}\right)^{RAD}$
	(clear)	<u>5√2</u> ↔ 3.535533906

Tehtävä

Laske alla olevan suorakulmaisen kolmion kulma A. Laske sen jälkeen kulma B sekä hypotenuusan c pituus. Pituusmitta on metri. Pyöristä vastaukset yhden desimaalin tarkkuudelle.

Muistutus:

 $\tan A = \frac{7}{3}$ joten $m \angle A = \tan^{-1} \left(\frac{7}{3}\right)$

Huomaa: Aseta kulmatila valintaan DEGREE ja kiinteä desimaalipiste (fix 1) laskuja varten.

mode enter \odot \odot $()$ $()$ enter	DICTION RADIAN GRADIAN	
	FLOAT 0 []23456789 ဩ∃Ω10 a+bi r∠0 ↓	
Clear	$\tan^{-1}\left(\frac{7}{3}\right)$ 66.8	
90 – [2nd] [answer] [enter]	tan¹(<u>7</u>) 66.8 90-ans 23.2	
2nd [√] 3 <u>x</u> ² + 7 <u>x</u> ² enter	tan¹(⅓) 66.8 90-ans 23.2 √3 ² +7 ² √58	
₩ <i>≅</i>	90-ans 23.2 √3 ² +7 ² √58 √58 ↔ 7.6	
mode enter \odot \odot $()$ $()$ enter	DEG DEG333 RADIAN GRADIAN NDRYAN SCI ENG FLOAT 0 0 2 3 4 5 6 7 8 9 REAL 4+6i r∠0	

Yhden desimaalin tarkkuudelle pyöristettäessä kulma A on 66.8°, kulma B on 23.2°, ja hypotenuusan pituus on 7.6 metriä.

Hyperboliset funktiot

sin sin⁻¹ tan. (monipainallusnäppäimet)

COS COS⁻¹ Painamalla toistuvasti jotakin näistä monipainallusnäppäimistä pääset vastaavaan hyperboliseen funktioon tai hyperboliseen käänteisfunktioon. Kulmatilat eivät vaikuta hyperbolisten funktioiden laskutoimituksiin.

Esimerkki

Aseta liukuva desimaalipiste	mode 🕤 🕤 enter	DECT333 RADIAN GRADIAN NORMAN SCI ENG AUCTI 0 1 2 3 4 5 6 7 8 9 Raci a+bi r∠0 ↓
	Clear sin., s	sinh(5)+2 [™] ~ 76.20321058
	O enter 2nd () Sing Sing Sing enter	sinh(5)+2 76.20321058 sinh ⁻¹ (5)+2 4.312438341

Logaritmi- ja eksponenttifunktiot

In log eⁿ 10ⁿ (monipainallusnäppäimet)

In log liittää luvun luonnollisen logaritmin, In, kantalukuun e. Funktion argumentti on In (arvo).

e ≈ 2.718281828459 laskutoimituksissa

e ≈ 2.718281828 näytössä liukuvan desimaalipisteen tilassa

In log In log liittää luvun yleisen logaritmin, \log_{10} . Funktion argumentti on log(*arvo*).

<u>In log</u> <u>In log</u> <u>Iiittää</u> logBASE-funktion MathPrint[™]-malliksi. Classic-syötteen argumentit ovat tarvittaessa **logBASE**(*arvo,kantaluku*).

 $e^{-10^{-1}}$ liittää merkin *e* potenssifunktioon.

eⁿ 10ⁿ eⁿ 10ⁿ liittää luvun 10 potenssifunktioon.

Esimerkkejä

log	In log In log 1) enter	log(1) Ö
In	[n log 5]) × 2 enter	log(1) 0 ln(5)*2 3.218875825

10 [□]	Clear $e^{\circ} 10^{\circ}$ $\left[n \log \right]$ $\left[n \log \right$	109(2) 109(10 ⁵)	2 5
e□	Clear e°10° .5 enter	e ^{.5} 1.6487212	71

Tilastot, regressiot ja jakaumat

data 2nd [stat-reg/distr]

(data) - näppäimellä voit syöttää ja muokata datalistoja. (Katso kappale Dataeditori.)

Näppäimet 2nd [stat-reg/distr] avaavat STAT-REG-valikon, joka sisältää seuraavat toiminnot.

Huomaa:

- Regressioista tallentuvat regression tiedot sekä datan kahden muuttujan tilastot StatVars-valikkoon (valikon kohta 1).
- Regression voi tallentaa joko riville f(x) tai g(x). Regressiokertoimet näkyvät täydellä tarkkuudella.

Vastauksia koskeva tärkeä huomautus: Monissa regressioyhtälöissä on samat muuttujat a, b, c ja d. Jos suoritat regressiolaskun, lasku ja kyseisen datan kahden muuttujan tilastot tallentuvat **StatVars**-valikkoon ja säilyvät tallessa seuraavaan tilastotai regressiolaskutoimitukseen saakka. Tuloksia on tulkittava viimeksi suoritetun tilasto- tai regressiolaskutoimituksen tyypin perusteella. Oikean tulkinnan helpottamiseksi otsikkorivillä on muistutus viimeksi suoritetusta laskusta.

1:StatVars	Avaa viimeksi laskettujen tilastotulosmuuttujien toisen valikon. Etsi haluamasi muuttuja näppäimillä ⊙ ja ⊙ ja valitse se enter]- näppäimellä. Jos valitset tämän vaihtoehdon ennen yhden tai kahden muuttujan tilastojen tai minkään regressioyhtälön laskemista, näkyviin tulee muistutus.
2:1-VAR STATS	Analysoi tilastotietoja yhdestä datasarjasta, jossa on yksi mitattu muuttuja, x. Frekvenssitiedot voivat sisältyä analyysiin.
3:2-VAR STATS	Analysoi dataparin kahdesta datasarjasta, jossa on kaksi mitattua muuttujaa: riippumaton muuttuja x ja riippuva muuttuja y. Frekvenssitiedot voivat sisältyä analyysiin. Huomaa: Kahden muuttujan tilastoissa lasketaan

	myös lineaarinen regressio ja annetaan lineaarisen regression tulokset. Näyttää a:n (kulmakerroin) ja b:n (y-akselin leikkauspiste) arvot sekä r ² :n ja r:n arvot.
4:LinReg ax+b	Sovittaa malliyhtälöä y=ax+b dataan käyttäen pienimmän neliösumman menetelmää vähintään kahdessa datapisteessä. Näyttää a:n (kulmakerroin) ja b:n (y-akselin leikkauspiste) arvot sekä r ² :n ja r:n arvot.
5:PropReg ax	Sovittaa malliyhtälöä y=ax dataan käyttäen pienimmän neliösumman menetelmää vähintään yhdessä datapisteessä. Näyttää a:n arvon. Tukee dataa, joka muodostaa pystyviivan, lukuun ottamatta kaikkea 0-dataa.
6:RecipReg a/x+b	Sovittaa lineaariseen dataan malliyhtälöä y=a/x+b käyttäen pienimmän neliösumman menetelmää vähintään kahdessa datapisteessä. Näyttää a :n ja b :n arvot sekä r ² :n ja r:n arvot.
7:QuadraticReg	Sovittaa dataan toisen asteen polynomifunktiota y=ax ² +bx+c. Näyttää a:n, b:n ja c:n arvot sekä R ² :n arvon. Kolmessa datapisteessä yhtälö on polynominen. Jos pisteitä on neljä tai enemmän, se on polynomiregressio. Vähintään kolme datapistettä vaaditaan.
8:CubicReg	Sovittaa dataan kolmannen asteen polynomifunktiota y=ax ³ +bx ² +cx+d. Näyttää a:n, b:n, c:n ja d:n arvot sekä R ² :n arvon. Neljässä datapisteessä yhtälö on polynominen. Jos pisteitä on viisi tai enemmän, se on polynomiregressio. Vähintään neljä pistettä vaaditaan.
9:LnReg a+blnx	Sovittaa dataan malliyhtälöä y=a+b ln(x) käyttäen pienimmän nelisumman menetelmää ja transformoituja arvoja ln(x) ja y. Näyttää a:n ja b:n arvot sekä r ² :n ja r:n arvot.
:PwrReg ax^b	Sovittaa dataan malliyhtälöä y=ax ^b käyttäen pienimmän neliösumman menetelmää ja transformoituja arvoja ln(x) ja ln(y). Näyttää a:n ja b:n arvot sekä r ² :n ja r:n arvot.
:ExpReg ab ^x	Sovittaa dataan malliyhtälöä y=ab ^x käyttäen pienimmän neliösumman menetelmää ja transformoituja arvoja x ja ln(y). Näyttää a:n ja b:n arvot sekä r ² :n ja r:n arvot.
:expReg ae^(bx)	Sovittaa lineaariseen dataan malliyhtälöä y=a e^ (bx) käyttäen pienimmän neliösumman menetelmää vähintään kahdessa datapisteessä. Näyttää a:n ja b:n arvot sekä r ² :n ja r:n arvot.

1:Normalpdf	Laskee normaalijakauman tiheysfunktion (pdf) tietyllä x:n arvolla. Oletusarvot ovat keskiarvo mu=0 ja keskihajonta sigma=1. Todennäköisyysfunktio (pdf) on: $f(x) = \frac{1}{2\sigma^2}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \sigma > 0$
	$\int \sqrt{2\pi\sigma} c^{2-2\sigma} \sqrt{2\pi\sigma}$
2:Normalcdf	Laskee normaalijakauman todennäköisyyden <i>alarajan</i> ja y <i>lärajan</i> välillä tietyllä keskiarvolla <i>mu</i> ja keskihajonnalla <i>sigma</i> . Oletusarvot ovat <i>mu</i> =0; <i>sigma</i> =1; <i>alaraja</i> = -1E99 ja y <i>läraja</i> = 1E99. Huomaa: -1E99–1E99 tarkoittaa -äärettömästä
	aarettomaan.
3:invNormal	Laskee normaalijakauman kertymäfunktion käänteisfunktion tietylle pinta-alalle keskiarvon mu ja keskihajonnan sigma määrittämän normaalijakauman käyrän alapuolella. Laskee x:n arvon, joka liittyy x:n arvosta vasemmalle olevaan alueeseen. $0 \le area \le 1$ on oltava tosi. Oletusarvot ovat pinta-ala=1, mu=0 ja sigma=1.
4:Binomialpdf	Laskee binomijakauman todennäköisyysfunktion satunnaismuuttujan x arvon tietyllä toistojen määrällä <i>numtrials</i> ja onnistumistodennäköisyydellä (p) kullekin yritykselle. x on ei-negatiivinen kokonaisluku ja voidaan syöttää vaihtoehtoisesti YHTENÄ syötteenä, syötteiden LISTANA tai sisältäen KAIKKI syötteet (saadaan lista todennäköisyyksistä väliltä 0 ja <i>numtrials</i>). $0 \le p \le 1$ on oltava tosi. Todennäköisyysfunktio (pdf) on: $f(x) = {n \choose x} p^x (1-p)^{n-x}, x = 0,1,,n$
5:Binomialcdf	Laskee binomijakauman kertymäfunktion satunnaismuuttujan x arvon tietyllä toistojen numtrials määrällä ja onnistumistodennäköisyydellä (p) kullekin yritykselle. x voi olla ei-negatiivinen kokonaisluku, joka voidaan syöttää YHTENÄ syötteenä, LISTANA tai KAIKKI (saadaan lista kumulatiivisista todennäköisyyksistä.) $0 \le p \le 1$ on oltava tosi.
6:Poissonpdf	Laskee Poissonin jakauman satunnaismuuttujan x arvon tietyllä keskiarvolla mu (μ), jonka on oltava reaaliluku > 0. x voi olla ei-negatiivinen kokonaisluku (YKSI) tai kokonaislukujen lista

	(LISTA). Oletusarvo on $mu=1$. Todennäköisyysfunktio (pdf) on: $f(x) = e^{-\mu}\mu^{x}/x!, x = 0, 1, 2,$
7:Poissoncdf	Laskee Poissonin jakauman kertymäfunktion satunnaismuuttujan x arvon tietyllä keskiarvolla mu, jonka on oltava reaaliluku > 0. x voi olla ei- negatiivinen kokonaisluku (YKSI) tai kokonaislukujen lista (LISTA). Oletusarvo on mu =1.

Tilastotulokset

Muuttujat	1-Var tai 2-Var	Määritelmä
n	Kumpikin	x tai (x,y) datapisteiden määrä
x	Kumpikin	Kaikkien <i>x</i> :n arvojen keskiarvo
<u>y</u>	2-Var	Kaikkien y:n arvojen keskiarvo
Sx	Kumpikin	x:n otoksen keskihajonta
Sy	2-Var	<i>y</i> :n otoksen keskihajonta
σχ	Kumpikin	x:n perusjoukon keskihajonta
σγ	2-Var	y:n perusjoukon keskihajonta
Σ x tai Σ x ²	Kumpikin	Kaikkien x:n tai x ² :n arvojen summa
Σ y tai Σ y ²	2-Var	Kaikkien y:n tai y ² :n arvojen summa.
Σχγ	2-Var	Summa (x×y) kaikista xy- pareista.
а	2-Var	Lineaarisen regression kulmakerroin
b	2-Var	Lineaarisen regression y-akselin leikkauspiste
r ² tai r	2-Var	Korrelaatiokerroin
x	2-Var	Laskee muuttujien a ja b avulla ennustetun x :n arvon annettaessa y :n arvo
Ý	2-Var	Laskee muuttujien a ja b avulla ennustetun y :n arvon annettaessa x :n arvo
minX tai maxX	Kumpikin	x:n arvojen minimi tai maksimi
Q1	1-Var	minX:n ja Med:n välisten elementtien keskiluku (1. kvartiili)

Muuttujat	1-Var tai 2-Var	Määritelmä
Med	1-Var	Kaikkien datapisteiden keskiluku
Q3	1-Var	Med:n ja maxX:n välisten elementtien keskiluku (3. kvartiili)
minY tai maxY	2-Var	y:n arvojen minimi tai maksimi

Tilastolliset datapisteet määritetään seuraavasti:

1. Lisää data kohtaan L1, L2 tai L3. (Katso kappale Dataeditori.)

Huomaa: Ei-kokonaislukuiset frekvenssielementit kelpaavat. Tästä on hyötyä syötettäessä prosentteina tai osuuksina ilmaistuja frekvenssejä, joiden yhteenlaskettu summa on 1. Otoksen keskihajonta, Sx, määritetään kuitenkin eikokonaislukuisina frekvensseinä, ja tämän arvon kohdalla näkyy viesti Sx=Error. Kaikki muut tilastot näytetään.

- 2. Paina näppäimiä 2nd [stat-reg/distr]. Valitse 1-Var tai 2-Var ja paina enter-näppäintä.
- 3. Valitse L1, L2 tai L3 sekä frekvenssi.
- 4. Avaa muuttujien valikko painamalla enter-näppäintä.
- Voit tyhjentää datan näppäilemällä data data, valitsemalla tyhjennettävän listan ja painamalla enter-näppäintä.

Yhden muuttujan esimerkki

Laske lukujen {45,55,55,55} keskiarvo.

Poista kaikki tiedot	data data ⊙ 🕤 🕤	CER FORMULA OPS 2↑Clear L2 3:Clear L3 48Clear ALL
Data	enter 45 • 55 • 55 • 55 enter	BE DEG BE 55 55 55 55 55 1 L1(5)= 1 1
Stat	2nd [quit] 2nd [stat-reg/distr]	STAT=REG [™] DISTR 1:StatVars 2:1-VAR STATS 3↓2-VAR STATS
	2 (valitsee yhden muuttujan tilastot 1- VAR STATS) ⊙ ⊙	ILEVARISTATS DATA: ILI L2 L3 FREQ: INI L1 L2 L3 (CALC

	enter	000 1=Var:11,1 1:n=4 2:x=52.5 3↓Sx=5	
Stat Var	2 enter	X	52 . Š
	× 2 [enter]	x ans*2	52.5 105

Kahden muuttujan esimerkki

Data: (45,30); (55,25). Määritä: x'(45).

Poista kaikki tiedot	data data 🗢 🕤 🕤	CIR FORMULA OPS 2↑Clear L2 3:Clear L3 4∎Clear ALL
Data	enter 45 ⊙ 55 ⊙ () 30 ⊙ 25 ⊙	BE DEG DEG DEG 45 30 55 25 L2(3)=
Stat	2nd [stat-reg/distr]	STATEREG [™] DISTR 1:StatVars 2:1-VAR STATS 3↓2-VAR STATS
	3 (valitsee kahden muuttujan tilastot 2- VAR STATS) ⓒ ⊙ ⊙	2 - VARISTATS ft %DATA: [1] L2 L3 %DATA: L1 [12] L3 FREQ: [1] L1 L2 L3 [6] L0
StatVars	enter 2nd [quit] 2nd [stat-reg/distr] 1 	2-Var:L1, 2,1 ↑x'(:y'(↓minX=45
	enter 45) enter	x'(45) 15

Tehtävä

Antti sai viimeisestä neljästä kokeesta seuraavat numerot. Kokeiden 2 ja 4 tuloksia painotettiin 0,5:llä ja kokeiden 1 ja 3 tuloksia 1:llä.

Kokeen nro	1	2	3	4
Koetulos	12	13	10	11
Painotusarvo	1	0,5	1	0,5

- 1. Laske Antin keskiarvo (painotettu keskiarvo).
- 2. Mitä laskimen antama arvo n tarkoittaa? Mitä laskimen antama arvo Σx tarkoittaa?

Muistutus: Painotettu keskiarvo on

 $\frac{\Sigma x}{n} = \frac{(12) \ (1) + (13) \ (0.5) + (10) \ (1) + (11) \ (0.5)}{1 + 0.5 + 1 + 0.5}$

3. Opettaja antoi Antille neljä lisäpistettä kokeesta 4 tekemänsä arvosteluvirheen vuoksi. Laske Antin uusi keskiarvo.

data data 🕤 🕤 🕤	CER FORMULA OPS 2↑Clear L2 3:Clear L3 48Clear ALL
enter data () 🕤 🕤 🕤 🕤	CLR ⊒ORMULE OPS 3↑Clear L2 Frmla 4:Clear L3 Frmla 58 Clear ALL
enter $12 \odot 13 \odot 10 \odot 11 \odot$ $() 1 \odot .5 \odot 1 \odot .5$ enter	BE DES DES 13 0.5 10 10 1 11 0.5 10 12 11 0.5 10 L2(5)= 10 10
[2nd] [stat-reg/distr]	STAT=REC [™] DISTR 1:StatVars 2:1-VAR STATS 3↓2-VAR STATS
2 (a) (b) (enter)	DEVARISITATS T DATA: III L2 L3 FREQ: ONE L1 III L3 GAIG
enter	1-Var:L1,L2 1:n=3 2:x=11.333333333 3↓Sx=Error

Antin keskiarvo (\overline{x}) on 11.33 (pyöristettynä lähimpään sadasosaan).

Laskimessa näkyvä n tarkoittaa painotusten kokonaissummaa.

n = 1 + 0.5 + 1 + 0.5.

 Σx tarkoittaa Antin koetulosten painotettua summaa.

(12)(1) + (13)(0.5) + (10)(1) + (11)(0.5) = 34.

Muuta Antin viimeinen koetulos 11 pisteestä 15 pisteeseen.

Jos opettaja lisää neljä pistettä kokeeseen 4, Antin keskiarvo on 12.

Tehtävä

Alla olevassa taulukossa on esitetty jarrutuskokeen tulokset.

Kokeen nro	1	2	3	4
Nopeus (km/h)	33	49	65	79
Jarrutusmatka (m)	5.30	14.45	20.21	38.45

Määritä nopeuden ja jarrutusmatkan välisen suhteen perusteella 55 kilometrin tuntinopeudella kulkevan ajoneuvon vaatima jarrutusmatka.

Näistä datapisteistä käsin piirretty kaavio osoittaa, että suhde on lineaarinen. Laskin määrittää parhaan vastaavuussuoran, y'=ax'+b, listoihin syötetylle datalle pienimmän neliösumman menetelmällä.

data data 交 交	CLR FORMÜLA OPS 2↑Clear L2 3:Clear L3 4∎Clear ALL
enter 33 ⊙ 49 ⊙ 65 ⊙ 79 ⊙ () 5.3 ⊙ 14.45 ⊙ 20.21 ⊙ 38.45 enter	Image: system of the system Description Image: system Image: system

[2nd] [quit] [2nd] [stat-reg/distr]	STATEREG [™] DISTR 1:StatVars 2:1-VAR STATS 3↓2-VAR STATS
3 (valitsee kahden muuttujan tilastot 2-VAR STATS) ⊙ ⊙ ⊙	Z=VARSTATS T %DATA: II L2 L3 yDATA: II III L3 FREQ: INE L1 L2 L3
enter	2-Var:L1, L2,1 1:n=4 2:x=56.5 3↓Sx=19.89137166
Paina tarpeen mukaan näppäintä \odot , jotta näet <i>a</i> :n ja <i>b</i> :n arvon.	2=Var:L1,L2,1 ↑Σxy=5234.15 :a=0.6773251895 yb=-18.66637320

Tämä parhaan vastaavuuden suora, y'=0.67732519x'-18.66637321, mallintaa datan lineaarisen trendin.

Paina näppäintä ⊙, kunnes y' näkyy korostuneena.	2 <u>-Var:L1, 2,1</u> ↑r=0.9634117172 :x'(Jy'(
enter 55) enter	ษ'(55) 18.58651222

Lineaarisesta mallista 55 kilometrin tuntinopeudella kulkevan ajoneuvon arvioiduksi jarrutusmatkaksi saadaan 18,59 metriä.

Regressioesimerkki 1

Laske lineaarinen regressio ax+b seuraavalle datalle: {1,2,3,4,5}; {5,8,11,14,17}.

Poista kaikki tiedot	data data 🗢 🕤 🕤	CIR FORMULA OPS 2↑Clear L2 3:Clear L3 4∎Clear ALL
Data	enter $1 \odot 2 \odot 3 \odot 4 \odot$ $5 \odot 0$ $5 \odot 8 \odot 11 \odot 14 \odot$	Image: bit of the state of the sta

	17 enter	
Regressio	2nd [quit] 2nd [stat-reg/distr]	STATEREG [™] DISTR 2↑1-VAR STATS 3:2-VAR STATS 4ULinRe9 ax+b
	enter	∞DATA: ■ L2 L3 ↑ yDATA: L1 ■ L3 FREQ: III L1 L2 L3 Re9EQ>: III f(x) g(x) y=a,x+b CALC
	 ⊙ ⊙ ⊙ ⊙ enter Tutki kaikkia vastausmuuttujia näppäimellä ⊙. 	ax+b:L1,L2,1 1:a=3 2:b=2 3↓r ² =1

Regressioesimerkki 2

Laske eksponentiaalinen regressio seuraavalle datalle:

- L1 = {0,1,2,3,4}; L2 = {10,14,23,35,48}
- Määritä datan keskiarvo listasta L2.
- Vertaa eksponentiaalisen regression arvoja listaan L2.

Poista kaikki tiedot	data data 4	L1(1)=
Data	$0 \odot 1 \odot 2 \odot 3$ $\odot 4$ $\odot 0 10 \odot 14$ $\odot 23 \odot 35 \odot$ 48 enter	BC DEG DEG <thdeg< th=""> DEG <thdeg< th=""> <thdeg< th=""> <thdeg< th=""></thdeg<></thdeg<></thdeg<></thdeg<>
Regressio	2nd [stat-reg/distr] ⊙ ⊙	STATEREG DISTR ^PwrRe9 ax^b ExpRe9 ab^x :expRe9 ae^(bx)
Tallenna regressioyhtälö table-valikon kohtaan f(x).	enter 🕤 🕤 🕤 🜘	xDATA: ■ L2 L3 ↑ yDATA: L1 ■ L2 L3 FREQ: 11 ■ L1 L2 L3 Re9EQ→: N0 11 L2 L3 y=a.b^x GATE

Regressioyhtälö	enter	ab ^2:L1,L2,1 1:a=9.8752598923 2:b=1.4998307325 3↓r ² =0.994802811
Määritä listan L2 datan keskiarvo (ȳ) tilastomuuttujien (StatVars) avulla.	$\begin{array}{l} \hline 2nd & [stat-reg/distr] \\ 1 & (valitsee \\ tilastomuuttujat \\ \hline StatVars) \\ \hline \odot & \odot & \odot \\ \hline \odot & \odot & \odot \\ \hline \odot & \odot & \odot \\ \hline \odot & \odot & \hline \end{array}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \hline \end{array} \\ $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} $ \end{array} $ \\ $ \end{array}$
Tutki regressioyhtälön arvotaulukkoa.	table 1	f(x)=9.87525989 [↑]
	enter \odot 0 enter 1 enter	IABUS Def T Start=0 f Step=1 f RULCO x = ? CALC
	enter enter	x f(x) 0 9.87526 1 14.81122 2 22.21432 x=0 1

Varoitus: Jos lasket nyt datalle kahden muuttujan tilastot (2-Var Stats), muuttujat a ja b (sekä r ja r²) lasketaan lineaarisena regressiona. Älä laske uudelleen kahden muuttujan tilastoja (2-Var Stats) minkään toisen regressiolaskun jälkeen, jos haluat säilyttää kyseisen tehtävän regressiokertoimet (a, b, c, d) ja r:n arvot **StatVars**valikossa.

Jakaumaesimerkki

Laske binomijakauma pdf x:n arvoissa {3,6,9} kokeiden määrällä 20 ja onnistumistodennäköisyydellä 0.6. Syötä x:n arvot listaan L1, tallenna vastaukset listaan L2 ja laske sen jälkeen todennäköisyyksien summa ja tallenna muuttuja *t*.

Poista kaikki tiedot	data data ⊙ 🕤 🕤	CER FORMÜLA OPS 2↑Clear L2 3:Clear L3 4∎Clear ALL
Data	enter 3 ⊙ 6 ⊙ 9 enter	EG DEG EE 3 6 9 11(4)=

DISTR	2nd [stat-reg/distr] () ⊙ ⊙ ⊙	DISTR 1:Normalpdf 2:Normalcdf SUBinomialpdf
	enter)	Binomicalizat; † %: SINGLE (DIST) ALL
	enter 20 ⊙ 0.6	Binomia ipdf Listi † TRIALS=n=20 P(SUCCESS)=0.6
	enter 🕤 🕤	BINOMIO.IPdf LISTI † %LIST: L1 L2 L3 SAVE TO: L1 L2 L3 CAUG
	enter	E Dec E B 4.230E*5 6 0.004854 9 9 0.070995 L1(1)=3
	data () 4 () enter	SUMUTISTI DEG T SUMUIST: L1 (2) L3 (ALC)
	enter () () () () enter enter	^{Des} † SUM OF LIST=0.0758915335… STORE: No x y z i a b c d DONIE

Todennäköisyys

[InCr nPr 2nd [random]

Imp on monipainallusnäppäin, joka selaa seuraavien vaihtoehtojen läpi:

!	Kertoma , n!, on välillä 1 ja <i>n</i> olevien positiivisten kokonaislukujen tulo. <i>n</i> :n arvon oltava positiivinen kokonaisluku \leq 69. Kun n = 0, n! = 1
nCr	Laskee mahdollisten kombinaatioiden määrän tietyillä <i>n</i> :n ja <i>r</i> :n arvoilla, jotka ovat ei-negatiivisia kokonaislukuja. Objektien järjestys ei ole tärkeä (kuten korttipakasta otetut kortit).
nPr	Laskee mahdollisten permutaatioiden määrän <i>n</i>

määrälle kohteita, joita otetaan r kerrallaan, tietyillä n:n ja r:n arvoilla, jotka ovat ei-negatiivisia kokonaislukuja. Objektien järjestys on tärkeä, kuten
kilpa-ajossa.

Näppäimillä 2nd [random] avautuu valikko, joka sisältää seuraavat vaihtoehdot:

rand	Luo satunnaisen reaaliluvun väliltä 0 ja 1. Voit säätää satunnaislukujen sarjaa tallentamalla kokonaisluvun (siemenarvon) ≥ 0 rand -muuttujaan. Siemenarvo muuttuu satunnaisesti aina kun satunnaisluku luodaan.
randint(Luo satunnaisen kokonaisluvun kahden kokonaisluvun, A ja B , väliltä, jossa $A \le$ randint $\le B$. Funktion argumentit ovat: randint (kokonaislukuA,kokonaislukuB)

Esimerkkejä

!	4 [!n ^C / _{nPr} enter	4! ^{DEG} 24
nCr	52 $\left[\frac{1}{n} \frac{nCr}{nPr}\right] \left[\frac{1}{nPr} \frac{nCr}{nPr}\right]$ 5 enter	4! 24 52 nCr 5 2598960
nPr	8 $[\frac{1}{1027}, \frac{1}{1027}, \frac{1}{1027}, \frac{1}{1027}, 3$ enter	4! 24 52 nCr 5 8 nPr 3 336
Tallenna arvo rand-	5 sto→ 2nd [random]	
Tallenna arvo rand- muuttujaan	5 sto→ 2nd [random]	RANDOM 1:rand 2:randint(
Tallenna arvo rand- muuttujaan	5 sto→ 2nd [random] 1 (Valitsee rand- muuttujan) enter	RENDOM 1: rand 2: randint (5→rand ^{DEG} 55

randint(2nd [random] 2 3 [2nd [,] 5 [) [enter]	5→rand rand 0.00009 randint(3,5)	ົ້5 3165 ຽ
----------	---	---	------------------

Tehtävä

Jäätelökioski mainostaa valmistavansa 25 eri makua kotijäätelöä. Haluat tilata jäätelöannoksen, jossa on kolme erilaista makua. Kuinka monta jäätelöyhdistelmää voit kokeilla erittäin kuuman kesän aikana?

Clear 25 [!mPr] [!mPr] 3 [enter]	25	nCr	3	2300

Voit valita 2300 erilaista jäätelöannosta, joissa kussakin on erilaiset makuyhdistelmät.

Matemaattiset työkalut

Tässä kappaleessa käsitellään laskimen työkalujen käyttöä. Näitä ovat esimerkiksi datalistat, funktiot ja muunnokset.

Tallennetut operaatiot

2nd [op] 2nd [set op]

Näppäimillä [2nd] [set op] voit tallentaa operaation.

Näppäimet [2nd] [op] liittävät operaation perusnäyttöön.

Operaation asettaminen ja myöhempi haku:

- 1. Paina näppäimiä [2nd] [set op].
- 2. Syötä jokin lukujen, operaatioiden ja/tai arvojen yhdistelmä.
- 3. Tallenna operaatio enter-näppäimellä.
- 4. Näppäimillä 2nd [op] voit hakea tallennetun operaation ja soveltaa sitä viimeiseen vastaukseen tai nykyiseen syötteeseen.

Jos sovellat näppäimillä [2nd] [op] haettua operaatiota suoraan [2nd] [op] - vastaukseen, iteraatiolaskurin **n=1** arvo kasvaa.

Esimerkkejä

Clear op (tyhjennä operaatio)	2nd [set op] Jos tallennettu operaatio on olemassa, tyhjennä se näppäimellä Clear.	op= Enter operation. Set op:[enter] ↓
Set op (aseta operaatio)	∑ 2 + 3	op=*2+3 ↓
	enter	Operation set! [2nd][op] pastes to Home Screen.
Recall op (hae operaatio)	4 [2nd] [op]	4*2+3 n=1 11

	[2nd] [op]	4*2+3 11*2+3	DEG	n=1 n=2	11 25
	[2nd] [op]	4*2+3 11*2+3 25*2+3	DEG	n=1 n=2 n=3	11 25 53
Redefine op (määritä operaatio uudelleen)	Clear 2nd [set op] Clear x^2 enter	0P= ²	DEG		t
Recall op (hae operaatio)	5 2nd [op] 20 2nd [op]	5 ² 20 ²	DEG	n=1 n=1 4	25 400

Tehtävä

Lähikauppa myöntää ostoksista asiakasuskollisuuspisteitä, joilla saat erilaisia palkkioita. Kauppa lisää 35 pistettä mobiilisovellukseesi jokaisella ostoskerralla. Haluaisit ladata palkkiona musiikkia, joka maksaa 275 pistettä. Kuinka monta ostoskertaa tarvitset? Alussa sinulla on 0 pistettä.

2nd [set op] Clear + 35	op=+35∎	DEG
enter		t
0 [2nd] [op] [2nd] [op] [2nd] [op] [2nd] [op]	0+35 35+35 70+35 105+35	^{DEG} n=1 35 n=2 70 n=3 105 n=4 140
2nd [op] 2nd [op] 2nd [op] 2nd [op]	140+35 175+35 210+35 245+35	n=5 175 n=6 210 n=7 245 n=8 280

Kahdeksan ostoskerran jälkeen sinulla on 280 pistettä, joka riittää lataukseen!

Dataeditori ja listakaavat

data

Näppäin data avaa dataeditorin, johon voit syöttää dataa enintään kolmeen listaan (L1, L2, L3). Jokainen lista voi sisältää enintään 50 alkiota.

Huomaa: Tämä toiminto on käytettävissä vain DEC-tilassa.

CLR (tyhjennä)	FORMULA (kaava)	OPS (asetukset)
1:Clear L1	1:Add/Edit Frmla	1:Sort Sm-Lg
2:Clear L2	2:Clear L1 Frmla	2:Sort Lg-Sm
3:Clear L3	3:Clear L2 Frmla	3:Sequence
4:Clear ALL	4:Clear L3 Frmla	4:Sum List
	5:Clear ALL	

Muokatessasi listaa voit avata data -näppäimellä seuraavat valikot:

Datan syöttäminen ja muokkaaminen

- Korosta solu dataeditorissa näppäimillä () () ⊙ ⊙ ja syötä arvo.
- Tila-asetukset, kuten lukumuoto, liukuva/kiinteä desimaalipiste ja kulmatilat, vaikuttavat solun arvon näyttöön.
- Murtoluvut, juurilausekkeet ja π :n arvot ovat näkyvissä.
- Näppäinten toiminta:
 - Painamalla näppäintä sto
 solun muokkaustilassa voit tallentaa solun arvon muuttujaan.
 - Näppäimellä •= voit vaihtaa lukumuotoa, kun solu on korostettu.
 - delete näppäimellä voit poistaa solun.
 - Näppäimillä enter clear voit tyhjentää solun muokkausrivin.
 - Näppäimillä [2nd] [quit] voit palata perusnäyttöön.
 - Näppäimillä 2nd ⊙ voit siirtyä listan alkuun.
 - Näppäimillä 2nd ⊙ voit siirtyä listan loppuun.
- CLR-valikosta voit tyhjentää listan datan.

Listakaavat (FORMULA-valikko)

- Painamalla dataeditorissa näppäimiä data () voit avata FORMULA-valikon. Valitse valikon kohta, jolla voit lisätä listakaavan korostettuun sarakkeeseen tai muokata kaavaa sarakkeessa tai tyhjentää kaavat jostakin listasta.
- Kun datasolu on korostettu, voit avata kaavan muokkaustilassa pikavalintanäppäimellä [sto+].
- Kun painat kaavan muokkaustilassa data-näppäintä, näkyviin tulee valikko, josta voit liittää kaavaan listan L1, L2 tai L3.
- Kaavat eivät voi sisältää kehäviittauksia, kuten L1=L1.
- Kun lista sisältää kaavan, solun nimi näkyy käänteisvärillä muokkausrivillä. Solut päivittyvät, jos niihin viittaavia listoja päivitetään.
- Voit tyhjentää kaavalistan tyhjentämällä ensin kaavan ja sen jälkeen listan.

- Jos näppäintä sto painetaan listakaavassa, lasketun listan viimeinen alkio tallentuu muuttujaan. Listoja ei voi tallentaa.
- Listakaavoissa voi käyttää kaikkia laskimen funktioita ja reaalilukuja.

Asetukset (OPS-valikko)

Painamalla dataeditorissa näppäimiä data ④ voit avata OPS-valikon. Valitse valikon kohta, jonka avulla voit:

- lajitella arvot pienimmästä suurimpaan tai suurimmasta pienimpään
- täyttää listan luomalla arvojonon
- laskea listan alkiot yhteen ja tallentaa summan muuttujaksi tarkastelua varten.

Esimerkki

L1	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	BE DEG DE 1/2
Kaava	() (data ()	CLR ≣ORNULE OPS LEAdd∕Edit Frmla 2:Clear L1 Frmla 3↓Clear L2 Frmla
	enter	E DEG DEG 1 / 4 3 / 4 1 AL2=
	data	NAMES 1:L1 2:L2 3:L3
	enter [2nd] [f∢⊁d]	I E DEG E 1/2 3/24 3/24 BL2=L1>f+d
	enter	E DEG E 1/4 0.25 1/2 0.5 3/4 0.75 - 1 1 - 12410=0.25 - -

Täytä lista lukujonolla	() data () 3 () () enter	SEQUENCE FILL LIST: L1 L2 L3
		1≤dim(1ist)≤50 ↓
	$\frac{[\pi_{i}^{e}]}{enter} \frac{x_{abcd}^{sci}}{4 \text{ enter } 1 \text{ enter }}$	EXPR IN χ:π χ ^{DES} START χ:1 END χ:4 STEP SIZE:1 <u>STEQUENCE FILL</u>
	enter	E DEG E 1/4 0.25 π 1/2 0.5 2π 3/4 0.75 3π 1 1 4π L3(1)=π 4π
Tallenna listan L1 summa muuttujaan z	data () 4 enter	SUNTERSI T SUM LIST: EL2 L3
		Gillo
	enter () () () enter enter	SUM OF LIST=5/2 STORE: No % y Z tabcd

Tehtävä

Internetin säätiedotuksessa ennustettiin seuraavia lämpötiloja erääksi marraskuun päiväksi.

Pariisi, Ranska 8°C

Moskova, Venäjä -1°C

Montreal, Kanada 4°C

Muistutus: $F = \frac{9}{5}C + 32$

8 👁 🗀 1 👁 4 👁 🕅	BC BE DEG DE 8 4 L2(1)=
data 🕥 1	IS DEG IS 8 -1 H HL2=
9 ÷ 5 × data 1 + 32	Image: Constraint of the state of
enter	CD DEG DEG DEG 8 115.4 -1 30.2 4 39.2 42449246.4

Australian Sydneyssä lämpötila on 21 °C. Määritä lämpötila Fahrenheit-asteina ja tallenna se muuttujaan z.

① ⊙ ⊙ ⊙ 21 enter	E DEG E -1 30.2 - 4 39.2 - 21 69.8 - -11(5)= - -
	BG BE DEG BE ' -1 30.2 ' 4 39.2 21 G9B3 L2(4)=69.8→2■
enter [2nd] [recall] 🕤 🕤	RECHLLYAR 1:x=0 2:y=0 GNz=69.8

Funktiotaulukko

table -näppäin avaa valikon, joka sisältää seuraavat vaihtoehdot:

1:Add/Edit Func	Voit määrittää funktion f(x) ja g(x) tai molemmat näistä ja luoda arvotaulukon. Kun painat näppäintä • z jonkin taulukon arvon kohdalla, lukumuoto muuttuu.
2:f(Liittää merkinnän f(syöttöalueelle, esimerkiksi perusnäyttöön, jossa funktion arvo lasketaan tietyssä pisteessä (esimerkiksi f(2)).

3:g(Liittää merkinnän g(syöttöalueelle, esimerkiksi perusnäyttöön, jossa funktion arvo lasketaan tietyssä pisteessä (esimerkiksi g(3)).
------	--

Funktiotaulukossa voit näyttää määritetyn funktion arvot taulukkomuodossa. Funktiotaulukon laatiminen:

- 1. Paina table näppäintä ja valitse komento Add/Edit Func.
- 2. Syötä toinen kahdesta mahdollisesta funktiosta ja paina enter-näppäintä.
- Valitse taulukon alku, taulukon askel, automaattinen ja Kysy-x ja paina enternäppäintä.

Määritetyt arvot sisältävä taulukko tulee näkyviin. Taulukon vastaukset näkyvät reaalilukuina vain DEC-tilassa. Kompleksilukufunktioita voi laskea vain perusnäytössä.

Start (alku)	Määrittää alkuarvon riippumattomalle muuttujalle eli x:lle.
Step (askel)	Määrittää lisäysarvon riippumattomalle muuttujalle eli x:lle. Askel voi olla positiivinen tai negatiivinen.
Auto (automaattinen)	Laskin luo automaattisesti sarjan arvoja taulukon alkuarvon ja askelarvon perusteella.
Ask-x (kysy x)	Voit laatia taulukon manuaalisesti syöttämällä tiettyjä arvoja riippumattomalle muuttujalle eli x:lle. Taulukossa on enintään kolme riviä, mutta voit korvata x:n arvoja tarpeen mukaan nähdäksesi enemmän vastauksia.

Huomaa: Painamalla funktiotaulukkonäkymässä dear J-näppäintä voit näyttää taulukon ohjatun asettelutoiminnon ja muokata sitä tarpeen mukaan.

Tehtävä

Määritä taulukon arvojen perusteella paraabelin, y = x(36 - x) huippupiste.

Muistutus: Paraabelin huippupiste on paraabelin käyrällä oleva piste, joka on myös symmetrialinjalla.

table 1 clear x_{abcd}^{zer} () 36 -	$f(x)=x(36-x)\blacksquare$
	4
enter Clear enter	Image: Starte0 t Starte0 t Step=1 x = ? CALC CALC

$15 \odot 3 \odot \odot$	TABLE SETUPTABLE SETUPTStart=15Step=3Step=3 $x = ?$ GALCGALC
enter	$\begin{array}{c c} x & f(x) \\ \hline 15 & 315 \\ 18 & 324 \\ 21 & 315 \\ x=15 \end{array}$

Kun olet etsinyt läheltä arvoa x = 18, piste (18,324) näyttää olevan paraabelin huippupiste, koska se näyttää olevan tämän funktion pistesarjojen käännöskohta. Jos haluat etsiä lähempää arvoa x = 18, muuta lisäysaskeleen arvoa nähdäksesi lähempänä arvoa (18,324) olevat pisteet.

Tehtävä

Hyväntekeväisyysjärjestö keräsi 3600 euroa auttaakseen paikallista ruokalaa. Ruokalalle annetaan joka kuukausi 450 euroa siihen saakka, kunnes hyväntekeväisyysvarat loppuvat. Kuinka monta kuukautta hyväntekeväisyysjärjestö tukee ruokalaa?

Muistutus: Jos x = kuukautta ja y = jäljellä olevat rahat, tällöin y = 3600 - 450x.

table 1 clear x^{yei} 3600 - 450	f(x)=3600 [∞] -450x∎†
enter Clear enter $0 \odot 1 \odot 0$ enter enter	TABLE SETUR Start=0 Ster=1 Auto Z=? CALC
Syötä jokainen arvaus ja paina enter- näppäintä.	$\begin{array}{c c} x & f(x) \\ 2 & f(x) \\ 2700 \\ \hline 7 & 450 \\ \hline 8 \\ x=8 \end{array}$
Laske funktion f(8) arvo perusnäytössä. [2nd] [quit] [table]	EUNCTION 1:Add/Edit Func 20f(3:9(
2 Valitsee f(8) enter	f(8) 0

450 euron kuukausittainen tuki riittää 8 kuukaudeksi, koska y(8) = 3600 - 450(8) = 0, kuten arvotaulukosta nähdään.

Tehtävä

Määritä käyrien f(x)=2x+5 ja g(x)=x-4 leikkauspiste.

Käyrien leikkauspiste on (x,y) = (3,-1).

Lausekkeen sieventäminen

2nd [expr-eval]

Näppäimillä [2nd] [expr-eval]voit syöttää ja laskea lausekkeen, joka sisältää lukuja, funktioita ja muuttujia/parametreja. Kun painat näppäimiä [2nd] [expr-eval]valmiin lausekkeen ollessa perusnäytössä, lauseke liitetään kohtaan **Expr=**. Jos kohdistin on historiatiedoissa, valittu lauseke liitetään kohtaan **Expr=** painettaessa näppäimiä [2nd] [expr-eval]

Jos lausekkeessa käytetään muuttujia *x*, *y*, *z*, *t*, *a*, *b*, *c* tai *d*, laskin pyytää jokaisella komennolla arvoja tai käyttää tallennettuja arvoja. Muuttujiin tallennettu luku päivittyy laskimessa.

Esimerkki

2nd [expr-eval]Clear	
	Enter Expression

7 $x^{y_{z_{z_{z_{z_{z_{z_{z_{z_{z_{z_{z_{z_{z_$	DEG
L Wabed I Wabed Wabed Wabed	Expr=2x+z∎
	L
enter clear 1 🗄 4	DEG
	x=1.∎ [↑]
	1-
	L
enter clear 2nd 🔽 27	DEG
	z=√27⊠ ⊺
	•
enter	
	2x+Z <u>1+6V3</u>
	2
2nd expr-eval	DEG
	Even-2at-
	Expr=2x+z
[SUG] [expi-eval]	Expr=2x+z
[sun [exh-ean]	Expr=2x+z
	Expr=2x+z
enter Clear 2nd [] 40	Expr= $2x+z$
enter clear 2nd [7] 40	Expr= $2x+z$ $x=\sqrt{40D}$
enter clear 2nd [7] 40	Expr= $2x+z$ $x=\sqrt{40D}$
enter [clear] [7] 40	Expr= $2x+z$ $x=\sqrt{400}$ $x=\sqrt{400}$
enter Clear 2nd [v] 40	Expr= $2x+z$ $x=\sqrt{400}$ $x=\sqrt{400}$
[enter] [clear] [2nd] [√] 40 [enter] [clear] [2nd] [√] 45 () [π ^e _i] [π ^e _i]	Expr= $2x+z$ $x=\sqrt{40D}$ $x=\sqrt{40D}$
enter [clear] 2nd [\checkmark] 40 enter [clear] 2nd [\checkmark] 45 (•) π_i^e π_i^e π_i^e]	Expr= $2x+z$ $x=\sqrt{40D}$ $z=\sqrt{45}i$
enter [clear] 2nd [\checkmark] 40 enter [clear] 2nd [\checkmark] 45 (\mathfrak{F} [$\pi_i^{\mathfrak{e}}$] ($\pi_i^{\mathfrak{e}}$]	Expr= $2x+z$ $x=\sqrt{40D}$ $z=\sqrt{45}i$ t
enter [clear] 2nd [\checkmark] 40 enter [clear] 2nd [\checkmark] 45 (\mathfrak{F} [$\pi_i^{\mathfrak{e}}$] ($\pi_i^{\mathfrak{e}}$]	Expr= $2x+z$ $x=\sqrt{40D}$ t $z=\sqrt{45}i$ t t
enter clear 2nd [\checkmark] 40 enter clear 2nd [\checkmark] 45 ($\mathfrak{F}, \overline{\pi}, \overline{n}, $	Expr= $2x+z$ $x=\sqrt{40D}$ $z=\sqrt{45}i$ t t
enter clear 2nd [\checkmark] 40 enter clear 2nd [\checkmark] 45 (\mathfrak{F} $\overline{\pi}^{\mathfrak{e}}_{i}$ ($\overline{\pi}^{\mathfrak{e}}_{i}$) $\overline{\pi}^{\mathfrak{e}}_{i}$ enter	Expr= $2x+z$ $x=\sqrt{40D}$ $z=\sqrt{45}i$ $z=\sqrt{45}i$ $z=\sqrt{45}i$
enter clear 2nd [τ] 40 enter clear 2nd [τ] 45 (•) π_{i}^{e} (π_{i}^{e}) π_{j}^{e} enter	Expr= $2x+z$ $x=\sqrt{40D}$ $z=\sqrt{45}i$ $z=\sqrt{45}i$ $z=\sqrt{45}i$
enter clear 2nd [τ] 40 enter clear 2nd [τ] 45 (\mathfrak{r} $\pi_{j}^{\mathfrak{e}}$ $\pi_{j}^{\mathfrak{e}}$ $\pi_{j}^{\mathfrak{e}}$ enter	Expr= $2x+z$ $x=\sqrt{40D}$ $z=\sqrt{45}i$ $z=\sqrt{45}i$ $z=\sqrt{45}i$

Vakiot

Constants (vakiot) -valikosta voit liittää tieteellisiä vakioita laskimen eri TI-30X Pro MathPrint[™] alueille. Näppäimillä 2nd [constants]voit avata ja näppäimellä ④ tai ④ voit valita joko NAMES- tai UNITS-valikon, jotka sisältävät samat 20 fysikaalista vakiota. Voit selata näiden kahden valikon sisältämiä vakioita näppäimillä ④ ja ④. NAMES-valikossa vakion merkin vieressä on sen nimilyhenne. UNITS-valikko sisältää samat vakiot kuin NAMES-valikko, mutta näkyvissä ovat vakioiden yksiköt.

Huomaa: Vakioiden arvot näkyvät pyöristettyinä. Laskutoimituksissa käytettävät arvot on esitetty alla olevassa taulukossa (NIST 2018).

Vakio		Laskutoimituksissa käytettävä arvo
с	valon nopeus	299792458 metriä/sekunti
g	painovoiman kiihtyvyys	9.80665 metriä/sekunti ²
h	Planckin vakio	6.62607015×10 ⁻³⁴ joulesekuntia
NA	Avogadron luku	6.02214076×10 ²³ molekyyliä/mooli
R	ideaalinen kaasuvakio	8.314462618 joulea/mooli/Kelvin
m _e	elektronin massa	9.1093837015×10 ⁻ 31 kilogrammaa
m _p	protonin massa	1.67262192369×10 ⁻²⁷ kilogrammaa
m _n	neutronin massa	1.67492749804×10 ⁻²⁷ kilogrammaa
mμ	myonin massa	1.883531627×10 ⁻²⁸ kilogrammaa
G	yleinen painovoima	6.6743×10 ⁻¹¹ metriä ³ /kilogramma/sekunti ²
F	Faradayn vakio	96485.33212 coulombia/mooli
a ₀	Bohrin säde	5.29177210903×10 ⁻¹¹ metriä
r _e	klassinen elektronin säde	2.8179403262×10 ⁻¹⁵ metriä
k	Boltzmannin vakio	1.380649×10 ⁻²³ joulea/Kelvin
e	elektronin varaus	1.602176634×10 ⁻¹⁹ coulombia
u	atomimassayksikkö	1.6605390666×10 ⁻²⁷ kilogrammaa
atm	standardi-ilmakehä	101325 pascalia
ε 0	tyhjiön permittiivisyys	8.8541878128×10 ⁻¹² faradia/metri
μ 0	tyhjiön permeabiliteetti	1.25663706212×10 ⁻⁶

Vakio		Laskutoimituksissa käytettävä arvo	
		newtonia/ampeeri ²	
Cc	Coulombin vakio	8.987551792261×10 ⁹ metriä/farad	

Kompleksiluvut

2nd [complex]

Voit laskea laskimella seuraavia kompleksilukulaskuja:

- Yhteenlasku, vähennyslasku, kertolasku ja jakolasku
- Argumentti ja absoluuttinen arvo
- Käänteisluku, neliö ja kuutio
- Liittokompleksiluku

Kompleksilukutilan asettaminen

Aseta laskin DEC-tilaan, kun lasket kompleksiluvuilla.

Näppäimillä mode \odot \odot \odot valitaan **REAL**-valikko. Selaa näppäimillä 0 ja 0 **REAL**-valikkoa ja korosta haluamasi kompleksiluvun tulosmuoto **a+bi** tai **r** $\angle \theta$ ja paina enternäppäintä.

REAL, **a+bi** tai **r** $\angle \theta$ asettavat kompleksilukulaskun vastauksen muodon.

a+bi kompleksilukulaskujen vastaukset suorakulmamuodossa

 $\mathbf{r} \ensuremath{\angle} \boldsymbol{\theta}$ kompleksilukulaskujen vastaukset napakoordinaattimuodossa

Huomaa:

- Kompleksilukulaskujen vastauksia ei näytetä, ellei kompleksilukuja syötetä.
- Merkki *i* syötetään näppäimistöltä monipainallusnäppäimellä <u>m</u>^e_i.
- Muuttujat *x*, *y*, *z*, *t*, *a*, *b*, *c* ja *d* ovat reaali- tai kompleksilukuja.
- Kompleksilukuja voi tallentaa.
- Kompleksilukuja ei sallita datassa, matriisissa, vektorissa tai missä kompleksiluvun argumentti ei kelpaa. Funktion voi määrittää kompleksilukulausekkeella, ja se lasketaan perusnäytöllä eikä taulukossa.
- Funktioissa conj(, real(ja imag(argumentti voi olla joko suorakulmaista tai napakoordinaattimuotoa. Tila-asetus määrittää funktion conj(tuloksen.
- Funktioiden real(ja imag(tulokset ovat reaalilukuja.
- Aseta kulmatilaksi DEGREE tai RADIAN tarvittavan kulmatilan mukaan.

Kompleksilukuvalikko	Kuvaus
1:∠	∠ (polaarikulman merkki)

Kompleksilukuvalikko	Kuvaus
	Voit liittää kompleksiluvun napakoordinaattimuodon (kuten 5 $ ot < \pi$).
2:polar angle	Laskee kompleksiluvun polaarikulman.
	Syntaksi: angle(arvo)
3:magnitude	Laskee kompleksiluvun magnitudin (modulin).
	Syntaksi: abs(arvo) (tai □ MathPrint [™] - tilassa)
4:) r∠θ	Näyttää kompleksiluvun tuloksen napakoordinaattimuodossa. Voi käyttää vain lausekkeen lopussa.
5:▶a+bi	Näyttää kompleksiluvun tuloksen suorakulmamuodossa. Voi käyttää vain lausekkeen lopussa.
6:conjugate	Laskee kompleksiluvun liittoluvun.
	Syntaksi: conj(arvo)
7:real	Laskee kompleksiluvun reaaliosan.
	Syntaksi: real(<i>arvo</i>)
8:imaginary	Laskee kompleksiluvun imaginaariosan (ei- reaalisen).
	Syntaksi: imag(arvo)

Esimerkkejä (aseta kulmatilaksi RADIAN)

Polaarikulman merkki: ∠	Clear 5 [2nd] [complex] enter π_i^e Ξ 2 [enter]	5∠ <u>π</u> 5i
Polaarikulma: angle($\begin{array}{c} \hline \text{clear} & \text{2nd} & [\text{complex}] \\ \hline & \\ \hline \\ \hline$	an9le(3+4i) 0.927295218
Magnitudi: abs($\begin{array}{c} \hline \text{(dear) 2nd [complex]} 3 \\ \hline (3 + 4 \overline{\pi_i^e} \ \pi_i^e \\ \hline \pi_i^e \end{array}) \hline \text{(enter)} \end{array}$	(3+4i) [™] 5
▶r∠θ	Clear 3 $+$ 4 π_i^e π_i^e π_i^e 2nd [complex] 4 [enter]	3+4i▶r∠0 5∠0.927295218

▶a+bi	clear 5 [2nd] [complex][enter 3 (\overline{T}) (\overlin	5∠ 3π)a+bi	-5i
Liittoluku:	Clear	RAD	
conj(2nd [complex] 6	conj(5-6i)	5+6i
	5 – 6 π_i^{e} π_i^{e} π_i^{e}		
	enter	L	
Reaaliluku:	clear		1Ĕ
real(2nd [complex]7	real(5-60)	Э
	5 $-$ 6 π_i^{e} π_i^{e} π_i^{e} π_i^{e}		
	enter		

Viitetiedot

Tässä kappaleessa käsitellään virheilmoituksia, paristojen ylläpitoa ja vaihtoa sekä vianmääritystä.

Virheet ja ilmoitukset

Kun laskin tunnistaa virheen, näytössä näkyy virheen tyyppi tai viesti.

- Virheen korjaaminen: Tyhjennä virhenäyttö deer-näppäimellä. Kohdistin näkyy virheen kohdalla tai sen lähellä. Korjaa lauseke.
- Virhenäyttö suljetaan lauseketta korjaamatta palaamalla perusnäytölle painamalla näppäimiä 2nd [quit].

Seuraavassa luettelossa on joitakin mahdollisia virheitä ja ilmoituksia.

Virhe/ilmoitus	Kuvaus
Argument	Tämä virheilmoitus näkyy, kun:
	 funktion argumenttien määrä ei ole oikein
	 alaraja on suurempi kuin yläraja yhteen- tai kertolaskussa
Bad Guess	Tämä virheilmoitus näkyy, kun yhtälön numeerisen ratkaisun Solve for -muuttujaan syötetty muuttuja ei ole syötettyjen ala- ja ylärajojen sisällä.
Bounds:	Tämä virheilmoitus näkyy, kun on syötetty alaraia > vläraia:
	Normalcdf-iakaumassa
	• yhtälön numeerisen ratkaisun rajoiksi
Break	Tämä virheilmoitus näkyy, kun lausekkeen sievennys pysäytetään on näppäimellä.
Calculate	Tämä viesti näkyy, kun tilastoja tai
1-Var,2-Var Stat	regressiolaskua ei ole tallennettu.
or a regression.	
Change mode to DEC.	Tämä virheilmoitus näkyy, kun tilaksi on asetettu BIN, HEX tai OCT ja käytetään seuraavia sovelluksia:
	[expr-eval]table] [convert] [stat-reg/distr] [data]
	[num-solv]poly-solv]sys-solv][matrix][vector]
	Näitä sovelluksia voi käyttää vain DEC-tilassa.
Dimension mismatch	Tämä virheilmoitus näkyy, jos laskutoimituksen matriisin tai vektorin mitat eivät ole oikein operaatiossa.
Division	Tämä virheilmoitus näkyy, jos lauseke sisältää jakolaskun nollalla.

Virhe/ilmoitus	Kuvaus
by 0	
Domain	 Tämä virheilmoitus näkyy, kun argumentti ei ole funktion määrittelyalueella. Esimerkki: Lausekkeessa x√y:
	<i>x</i> = 0
	– tai –
	y < 0 ja x ei ole pariton kokonaisluku.
	• Lausekkeessa y^{x} : y ja $x = 0$.
	 Lausekkeessa √x: x < 0. Funktiossa log, ln tai logBASE: x ≤ 0. Funktiossa tan: x = 90°, -90°, 270°, -270°, 450°, jne. ja vastaava radiaanitilassa. Funktiossa sin-1 tai cos-1: x > 1.
	 Funktiossa nCr tai nPr: n tai r eivät ole kokonaislukuja ≥ 0.
	 Lausekkeessa x!: x ei ole kokonaisluku väliltä 0 ja 69.
Enter 0≤area≤1	Tämä virheilmoitus näkyy, kun syötät kelpaamattoman alueen arvon jakauman invNormal-funktioon.
Enter sigma>0	Tämä virheilmoitus näkyy, kun sigman arvo on kelpaamaton jakaumassa.
Expression is too long	Tämä virheilmoitus näkyy, kun syöte ylittää sallitun numeromäärän. Syötetty lauseke esimerkiksi liitetään vakioon, joka ylittää sallitun rajan.
	saavutetaan MathPrint™-toiminnoissa.
Formula	Tämä virheilmoitus näkyy (data)-näppäintä painettaessa, kun:
	 kaava ei sisällä listan nimeä (L1, L2 tai L3)
	• IIstan kaava sisaltaa oman Iistanimensä Esimerkiksi listan L1:n kaava sisältää listanimen L1.
Frequency: Enter FREQ≥0	Tämä virheilmoitus näkyy, kun vähintään yksi komentoon <i>FREQ</i> valittu listan alkio on negatiivinen reaaliluku 1 muuttujan 1-VAR tai 2 muuttujan tilastossa 2-VAR STATS .
Highest degree	Tämä virheilmoitus näkyy, kun polynomin

Virhe/ilmoitus	Kuvaus
coefficient	ratkaisussa kertoimeksi a tulee nolla tai jos a:n
cannot be zero.	syöte on nolla. Muuta arvo muuksi kuin nolla.
Input must be	Tämä virheilmoitus näkyy, kun syöte ei ole
non-negative	vaadittua lukutyyppiä. Esimerkiksi jakauman
Integer.	funktiossa.
Input	Tämä virheilmoitus näkyy, kun syötteen on
must be Real	oltava reaaliluku.
Invalid	Tämä virheilmoitus näkyy, kun komennon tai
data type	funktion argumentin datatyyppi on väärä.
	Virhe esiintyy esimerkiksi funktiossa sin(i) tai min(i,7), jossa argumenttien on oltava reaalilukuja.
Invalid Dimension	Tämä virheilmoitus näkyy, kun matriisi- tai vektorioperaatiota ei voi suorittaa virheellisten dimensioiden vuoksi
Invalid	
equation	ratkaisijaan on syötetty kelpaamaton yhtälö,
equation	kuten 1000=10000, tai tyhjä yhtälö.
Invalid	Tämä virheilmoitus näkyy, kun funktiota ei ole
function	määritetty ja funktiota yritetään sieventää. Määritä funktiot [table]-näppäimen kautta.
List Dimension	Tämä virheilmoitus näkyy, kun data -valikossa:
1≤dim(list)≤50	 SUM LIST -funktio suoritetaan tyhjällä listalla
	 luodaan lukujono, jonka pituus on 0 tai >50.
Max iterations	Tämä virheilmoitus näkyy, kun yhtälön
reached.	numeerinen ratkaisija on ylittänyt sallittujen
Try new guess.	lövtämisessä. Muuta ratkaisumuuttuian
	alkuarvaus tai tarkista yhtälö.
Mean:	Tämä virheilmoitus näkyy, kun keskiarvoksi
Enter mu>0	(<i>mean</i> = <i>mu</i>) on syötetty kelpaamaton arvo
	poissonpdf- tai poissoncdf-funktiossa.
Memory limit	Tämä virheilmoitus näkyy, kun lasku sisältää
reached	viittaavaa funktiota, tai hyvin pitkän
	laskutoimituksen.
No sign change	Tämä virheilmoitus näkyy, kun numeerisen
found.	ratkaisun algoritmi ei löydä ratkaisua. Muuta
Try new guess.	vhtälö.
	'

Virhe/ilmoitus	Kuvaus
	Toistuvissa juuriyhtälöissä, kuten x^2=0, ei ole merkin muutosta juuren ympärillä, mikä on olennaista, jotta numeerisen ratkaisun algoritmi löytää ratkaisun iteroimalla.
[2nd] [set op]: Operation is not defined.	Tämä virheilmoitus näkyy, kun operaatiota ei ole määritetty näppäinten [2nd] [set op] kautta ja painetaan näppäimiä [2nd] [op].
Operation set! [2nd] [op] pastes to Home Screen.	Tämä viesti näkyy, kun operaatio on tallennettu (asetettu) näppäinten [2nd] [set op] avaamasta editorista. Jatka painamalla mitä tahansa näppäintä.
Overflow	Tämä virheilmoitus näkyy, kun laskutoimitus tai arvo ylittää laskimen alueen.
Probability: Enter 0≤p≤1	Tämä virheilmoitus näkyy, kun jakaumien todennäköisyyden syöte ei kelpaa.
Singular matrix	Tämä virheilmoitus näkyy, kun yritetään luoda singulaarisen matriisin käänteismatriisia. Singulaarisen matriisin determinantti = 0.
Singularity	Tämä virheilmoitus näkyy, kun numeerisen ratkaisijan algoritmi ei pysty antamaan ratkaisua, koska funktiolla on määrittämätön piste.
Statistics	Tämä virheilmoitus näkyy, kun tilasto- tai regressiofunktio ei ole kelvollinen. Esimerkiksi kun yritetään laskea 1 muuttujan tai 2 muuttujan tilastoja eikä datapisteitä ole määritetty.
Step size must not be 0.	Tämä virheilmoitus näkyy, kun data -valikon vaihtoehto STEP SIZE on asetettu arvoon 0 SEQUENCE FILL -funktiossa.
Syntax	Tämä virheilmoitus näkyy, kun lausekkeessa on väärin sijoitettuja funktioita, argumentteja, sulkeita tai pilkkuja.
Tolerance not met	Tämä virheilmoitus näkyy, kun toleranssin argumentti esimerkiksi numeerisessa differentiaalilaskussa tai numeerisessa integroinnissa on sellainen, että algoritmi ei pysty antamaan tarkkaa vastausta.
TRIALS: Enter 0≤n≤49	Tämä virheilmoitus näkyy Binomialpdf- ja Binomialcdf-funktiossa, kun yritysten määrä on yli sallitun alueen, 0≤ n ≤49 tapauksessa ALL.
Undefined	Tämä virheilmoitus näkyy, kun matriisia tai

Virhe/ilmoitus	Kuvaus
	vektoria ei ole määritetty. Määritä matriisi tai vektori [matrix]- tai [vector] EDIT -valikossa.

Paristojen tiedot

Akun varoitus:

- Älä syö akkua, Chemical Burn Hazard.
- Tämä tuote sisältää kolikon tai nappipariston. Jos kolikko- tai nappiparisto niellään, se voi aiheuttaa vakavia sisäisiä palovammoja vain 2 tunnissa ja voi johtaa kuolemaan.
- Pidä uudet ja käytetyt paristot poissa lasten ulottuvilta.
- Varmista aina täysin akkutila. Jos paristotila ei sulkeudu kunnolla, lopeta tuotteen käyttö, poista paristot ja pidä ne poissa lasten ulottuvilta.
- Jos epäilet, että paristot on nielty tai asetettu mihin tahansa kehon osaan, hakeudu välittömästi lääkärin hoitoon.
- Soita paikalliselle myrkytyskeskukselle hoitotietojen saamiseksi.
- Jopa käytetyt paristot voivat aiheuttaa vakavia vammoja tai kuoleman.
- Ei-ladattavia paristoja ei saa ladata uudelleen.
- Älä pakota purkamaan, lataamaan, purkamaan, kuumentamaan yli 140 F (60C) tai polttamaan. Tämä voi johtaa haavoihin, jotka johtuvat tuuletuksesta, vuodosta tai räjähdyksestä ja jotka johtavat kemiallisiin palovammoihin.
- Varmista, että akut on asennettu oikein polariteetin (+ ja -) mukaan.
- Älä sekoita vanhoja ja uusia paristoja, erilaisia tuotemerkkejä tai akkuja, kuten alkaliparistoja, hiili-sinkkiä tai ladattavia paristoja.
- Tulipalo- tai räjähdysvaara, jos akku vaihdetaan väärään tyyppiin.
- Poista ja kierrätä välittömästi tai hävitä akut laitteista, joita ei ole käytetty pitkään aikaan paikallisten määräysten mukaisesti. Paristoja El saa hävittää talousjätteiden mukana eikä polttaa.

Paristojen poistaminen tai vaihtaminen

TI-30X Pro MathPrint[™] -laskimessa käytetään kahta 3 voltin CR2032-paristoa.

- Poista suojakansi ja käännä laskin ylösalaisin.
- Avaa kotelon takana olevat ruuvit pienellä ruuvimeisselillä.
- Irrota etuosa varovasti takaosasta aloittaen alhaalta. Varo vaurioittamasta sisäosia.
- Avaa pariston kiinnikkeessä oleva ruuvi pienellä ruuvimeisselillä ja poista paristot.

 Tarkista paristojen oikea polariteettisuunta (+ ja -) ja työnnä uudet paristot paikalleen. Paina lujasti siten, että uudet paristot napsahtavat paikalleen ja kiinnitä kiinnikkeen ruuvi.

Tärkeää: Kun vaihdat paristoja, vältä koskettamasta muita laskimen osia.

Hävitä käytetyt paristot heti noudattaen paikallisia määräyksiä.

CA-määräyksen 22 CCR 67384.4 mukaan seuraava koskee tämän laitteen nappiparistoja:

Perkloraattimateriaali – saattaa edellyttää erikoiskäsittelyä.

Katso: www.dtsc.ca.gov/hazardouswaste/perchlorate

Vianmääritys

Tarkista ohjeet varmistaaksesi, että olet suorittanut laskut oikein.

Tarkista, että paristoissa on virtaa ja että ne on asennettu oikein.

Vaihda paristot, jos:

- virta ei kytkeydy laskimeen on -näppäimellä
- näyttö pimenee
- laskin antaa vääriä vastauksia.

Yleistietoja

Verkkotuki

education.ti.com/eguide

Valitsemalla maan saat lisää tuotetietoja.

Ota yhteys TI-tukeen

education.ti.com/ti-cares

Valitse maa ja etsi teknisiä ja muita tukiresursseja.

Asiakastuki ja takuu

education.ti.com/warranty Valitse maasi, niin saat tietoa takuun kestosta ja ehdoista tai tuotepalvelusta. Rajoitettu takuu. Tämä takuu ei vaikuta lainmukaisiin oikeuksiisi. Texas Instruments Incorporated 12500 TI Blvd. Dallas, TX 75243