

About the Lesson

In this activity, students will determine that the inverse of the exponential function is the natural log function by plotting the inverse of exponential solution points. As a result, students will:

- Analyze the function $y = e^x$, its corresponding inverse function $y = \ln x$, and their reflection about the line y = x.
- Analyze the function $y = 10^x$, its corresponding inverse function $y = \log(x)$, and their reflection about the line y = x.

Vocabulary

- line reflections
- natural logarithmic function
- exponential function
- inverse functions

Teacher Preparation and Notes

- Students should be somewhat familiar with the concept of basic logarithms in order to complete this activity.
- This activity is suitable for an Algebra 2 class or as a refresher activity for a Precalculus class.

Activity Materials

• Compatible TI Technologies:

TI-84 Plus*

TI-84 Plus Silver Edition*

- TI-64 Flus C Silver Eur
- ●TI-84 Plus CE

* with the latest operating system (2.55MP) featuring MathPrint [™] functionality.

Tech Tips:

- This activity includes screen captures taken from the TI-84
 Plus CE. It is also appropriate for use with the rest of the TI-84
 Plus family. Slight variations to these directions may be required if using other calculator models.
- Watch for additional Tech Tips throughout the activity for the specific technology you are using.
- Access free tutorials at <u>http://education.ti.com/calculato</u> <u>rs/pd/US/Online-</u> <u>Learning/Tutorials</u>
- Any required calculator files can be distributed to students via handheld-to-handheld transfer.

Lesson Files:

- Exponential_Reflections_Student
 .pdf
- Exponential_Reflections_Student .doc

TEACHER NOTES

Problem 1 – Reflecting the Exponential Function

Students begin by graphing the function, $y = e^x$ and recording the *y*-values for certain *x*-values by using the **Table**.

The students then find the inverse of these collected points by switching the *x*- and *y*-values and plotting them.

1. What would the inverse of this graph look like?

<u>Answer</u>: The inverse graph would be increasing, concave down, passing through (1, 0), having a domain of $(0,\infty)$ and a range of $(-\infty\infty)$.

Tech Tip: If your students are using the TI-84 Plus CE have them turn on the GridLine by pressing[2nd] [zoom][format] to change the graph settings. If your students are using TI-84 Plus, they could use GridDot.

2. Record the *y*-values under the original *y*-value column in the table below.

Next record the inverses of each point by switching the *x*- and *y*-values and recording the results in the inverse columns in the table below.

Original <i>x</i> -value	Original y-value	Inverse x-value	Inverse y-value	
-2	0.135	0.135	-2	
-1	0.368	0.368	-1	
0	1	1	0	
1	2.718	2.718	1	
2	7.389	7.389	2	
3	20.086	20.086	3	

Answers:

The students then find the inverse of these collected points by switching the *x*- and *y*-values and plotting their scatter plot.

3. What do you notice about the plotted values?

<u>Answer</u>: They appear to reflections of the points on the graph of $y = e^x$ about the line y = x.

L1	L2	Lз	L4	L5	
.135	-2				
.368	-1				
1	0				
2.718	1				
7.389	2				
20.086	3				

Exponential Reflections

As the students look at the graph and look for a pattern, it may be helpful for them to plot the function y = x (in Y2) to help them see the reflection.

After noticing the reflection of the original function, the students are asked to solve the inverse function by hand.

4. Find the inverse of $y = e^x$. This is done by switching x and y (exchanging the input with the output) in the equation and solving for y.

$$y = e^{x}$$

$$x = e^{y}$$
Answer:

$$\ln(x) = \ln(e^{y})$$

$$\ln(x) = y \ln e$$

$$\ln(x) = y$$

Have students graph their resulting function to show that it matches the scatter plot.

Extension – Reflecting $y = 10^x$

In this part of the activity, students repeat the process from Problem 1 using $y = 10^x$. Students may need to "zoom in" to see portion of the graph of $y = \log(x)$ that exists close to the *y*-axis. Pressing zoom, selecting **2:Zoom In** and pressing enter will zoom in at the origin and allow the graph to be viewed a little more appropriately.

5. Find the inverse of $y = 10^{x}$.

 $y = 10^{x}$ $x = 10^{y}$ Answer: $\log(x) = \log(10^{y})$ $\log(x) = y \log 10$ $\log(x) = y$

The students will determine that the inverse of $y = 10^x$ is y = log(x).