(2 marks)

Topic 4: Statistics and Probability

Correlation Coefficient and Linear Regression

1. The table below contains the pulse rates of students before and after exercise in beats per minute.

Pulse Rate	86	88	75	88	64	84	85	91	89	86	87	96
Before												
Exercise												
(x)												
Pulse Rate	160	161	150	160	140	155	154	163	158	156	159	160
After												
Exercise												
(y)												

Find:

(a) Pearson's product-moment correlation coefficient, r	(2 marks)
(b) The equation of the regression line y on x	(2 marks)

(c) Use the line y on x to estimate the pulse rate of a student (2 marks) after exercise if their pulse rate before exercise was 90 beats per minute

Mark scheme:

- (a) r = 0.9(A2) (A1)(A1) For correct gradient and (b) y = 0.7x + 95.6correct y-intercept. Must be in the form of an equation to receive both marks. (c) y - 0.7(90) + 95.6(M1)
 - y = 158.6(A1)