

1. A math teacher has a son, Dennis, who plays little league baseball and came up with a great idea for a problem while watching a game last Saturday. She modelled an equation based off of one of Dennis's hits:

$$h(t) = 3t^2 + 16.3t + 1.5, t \ge 0$$

Where *h* is the height of the ball in meters, *t* is the length of time in seconds, and t = 0 represents the moment Dennis hit the ball.

|   | (a) What is the height, off the ground, from which the ball is hit? | (1 mark)  |
|---|---------------------------------------------------------------------|-----------|
| ( | (b) Find the height of the ball after 3 seconds                     | (2 marks) |
| ( | (c) The ball lands after $p$ seconds, find $p$                      | (2 marks) |
| ( | (d) Find $h'(t)$                                                    | (2 marks) |
| ( | (e) (i) When is the ball at its maximum height?                     | (2 marks) |
|   | (ii) Find the maximum height of the ball.                           | (2 marks) |

Mark scheme:

| (a) | ) 1.5 m                                                          | (A1)                                              |
|-----|------------------------------------------------------------------|---------------------------------------------------|
| (b) | t = 3<br>$h(3) = -3(3)^2 + 16.3(3) + 1.5$<br>h(3) = 23.4 m       | (M1)<br>(A1)                                      |
| (c) | c) Solving for $t$ using the calculator, quadratic               | (M1)                                              |
|     | formula, etc<br>t = 5.52 seconds                                 | (A1)                                              |
| (d) | h'(t) = -6x + 16.3                                               | (A1)(A1)                                          |
| (e) | (i) $0 = -6x + 16.3$                                             | (M1) ft Setting their derivative = $0$            |
|     | x = 2.72 seconds                                                 | (A1) ft                                           |
|     | (ii) $h(2.72) = -3(2.72) + 16.3(2.72) + 1.5$<br>h(2.72) = 23.6 m | (M1) ft Plugging in their (e)(i) value<br>(A1) ft |
|     |                                                                  |                                                   |