Binomial Expansion

TI-30XPlus MathPrint ${ }^{\text {TM }}$

Worksheet

Calculator Skills:

- Generate a List using the Sequence command
- Use the ${ }^{n} C_{r}$ command (Multi-Tap key)

Formula:

$$
(a x+b y)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r}(a x)^{n-r}(b y)^{r}
$$

Don't be spooked by the scary formula, it's really easy to use and each term will be generated separately using lists. Make sure you watch the video first!

Question: 1.

In this question we expand expressions of the form $(x+y)^{n}$ (by hand) and then look at how the calculator lists can be used to expedite the process.
i) Write $(x+y)^{2}$ in expanded form.

Study the exponents of x and y from left to right, this will help you expand much higher degree expressions later.
ii) Use the calculator lists to generate the coefficients of $(x+y)^{2}$.

The video tutorial demonstrates how to include the term number utilising List 1 and the coefficients in List 2.
An alternative solution is to use the sequence command shown

EXPR IN $x: 2 \mathrm{nCr}{ }^{\text {RAD }} \boldsymbol{x}$	
START $x: 0$	
END $x: 2$	
STEP SIZE:1	
	SEQUENCE FILL

Note: The sequence command uses ' x ' as the variable which we are using to model the exponent (n).
iii) Write $(x+y)^{3}$ in expanded form, once again, notice the pattern in the exponents of x and y.
iv) Use the lists on the calculator to automatically generate all the coefficients of $(x+y)^{3}$.
v) Use the patterns observed above and the calculator lists to write: $(x+y)^{6}$ in expanded form.

Question: 2.

In this question we expand expressions of the form $(a x+b y)^{n}$ (by hand) and then look at how the calculator lists can be used to expedite the process.
i) Write $(a x+b y)^{2}$ and $(3 x+4 y)^{2}$ in expanded form.
ii) The general formula to use for each coefficient for expressions of the form: $(a x+b y)^{n}$ is: ${ }^{n} C_{r} \times a^{n-r} \times b^{r}$. For the expression: $(3 x+4 y)^{2}$ use: ${ }^{2} C_{x} \times 3^{2-x} \times 4^{x}$ (shown opposite using the sequence command.

Compare the list results to the coefficients determined in the previous question. (Q2(i))
iii) Determine the coefficients for $(3 x+4 y)^{4}$ by expansion and by editing the sequence formula.

Answers on Page 2

Question: 1.

i) $(x+y)^{2}=(x+y)(x+y)=x^{2}+2 x y+y^{2}$

Coefficients: $\{1,2,1\}$
ii) In this example the coefficients of x and y are both 1 , this makes the list formula simple. The coefficients are generated
 using the combinatorics command, row 2 of Pascal's triangle.
iii) $(x+y)^{3}=\left(x^{2}+2 x y+y^{2}\right)(x+y)=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \quad$ Coefficients: $\{1,3,3,1\}$

Notice the decreasing powers of $x:\{3,2,1,0\}$ and corresponding increasing powers of $y:\{0,1,2,3\}$
iv) Once again, the coefficients of x and y are both 1 . The coefficients in the expanded form can be generated using the combinatorics command, row 3 of Pascal's triangle.

v) $(x+y)^{6}=\left(x^{3}+3 x^{2} y+3 x y^{2}+y^{3}\right)\left(x^{3}+3 x^{2} y+3 x y^{2}+y^{3}\right)$
$=x^{6}+6 x^{5} y+15 x^{4} y^{2}+20 x^{3} y^{3}+15 x^{2} y^{4}+6 x y^{4}+y^{6}$
The term by term expansion is exhausting, even using the previous question. The coefficients however are simply the $6^{\text {th }}$ row of Pascal's triangle: $\{1,6,15,20,15,6,1\}$, generated using the list command (below). Combining this information with the pattern for the exponents: $\mathrm{x}:\{6,5,4,3,2,1,0\}$ and $\mathrm{y}:\{0,1,2,3,4,5,6\}$, means it is easy to expand.

EXPR IN $x: 6 \mathrm{ncr} \stackrel{\text { RAD }}{x}$
START $x: 0$
END $x: 6$
STEP SIZE:1
SEQUENCE FILL

Question: 2.

i) $(a x+b y)^{2}=a^{2} x^{2}+2 a b x y+b^{2} y^{2}$ and
$(3 x+4 y)^{2}=3^{2} x^{2}+2 \times 3 \times 4 \times x y+4^{2} y^{2}=9 x^{2}+24 x y+16 y^{2}$
ii) Notice the decreasing powers of the x coefficient are the same as for the powers of x, and similarly with the y coefficient. The x coefficients start at 2 (in general, ' n ') and progress to zero, the y coefficients do the reverse.

```EXPR IN \(x: 43^{\wedge}(2-x): *^{\text {RAD }} 4^{\wedge} x \square \uparrow\) START \(\chi: 0\) END \(x: 2\) STEP SIZE:1```	回	
	24 16	
SEQUENCE FILL	L1(1) $=9$	

iii) $(3 x+4 y)^{4}=81 x^{4}+432 x^{3} y+864 x^{2} y^{2}+768 x y^{3}+256 y^{4}$. The coefficients generated using the sequence formula in the calculator are: $\{81,432,864,768,256\}$

The formula in the sequence command can be generalised by storing values for 'a' and 'b' and storing the exponent in c . The 'end' value in the sequence still needs to be entered manually.


[^0]
[^0]:    (C) Texas Instruments 2022. You may copy, communicate and modify this material for non-commercial educational purposes

