First Principles

Worksheet

15 min

TI－30XPlus MathPrint ${ }^{\text {TM }}$

$$
f^{\prime}(x)=\lim _{d \rightarrow 0} \frac{f(x+d)-f(x)}{d}
$$

Question： 1.

For each of the following，use first principles to determine the approximate the gradient for the given value of d at the corresponding value for x ．
i）$f(x)=x^{2}+5 x+6$ where $d=0.1$ and $x=2$
ii）$f(x)=x^{2}-4 x+3$ where $d=0.01$ and $x=0$
iii）$f(x)=(x+3)(x+1)(x-1)$ where $d=0.001$ and $x=1$

Question： 2.

Use first principles to find the gradient of the function $f(x)=\frac{1}{x-1}$ where it crosses the y axis．

Question： 3.

Use first principles to find the gradient of the function $f(x)=x^{2}-1$ where it crosses the x axis．

Question： 4.

A graph of $f(x)=\sin (x)$ over the domain $0 \leq x \leq 2 \pi$ is shown opposite．
Generate a table of values for the gradient （from first principles）starting at 0 in steps of $\pi / 6$ and $d=0.0001$ ．Make sure your calculator is in RADIAN mode．Graph the results．
What is the equation for the gradient function？

Extension

The TI－30XPlus MathPrint is not an algebraic calculator at all，however you can use regression to work out some equations．Let $f(x)=x^{3}-2 x^{2}+7 x-1$ ，the gradient function is a quadratic．Use the lists feature in the calculator to determine the gradient of $f(x)$ for at least 3 different x values．Use quadratic regression to determine the corresponding equation for the gradient function．

Answers on Page 2

[^0]Author：P．Fox

Question: 1.

i) 9.1
ii) -3.99
iii) 8.006001

Question: 2.

Graph crosses the y axis when $\mathrm{x}=0$. The approximate gradient $(\mathrm{d}=0.001)$ is -1.001 which appears to be approaching -1 .

Question: 3.

Graph crosses the x axis in to locations: $x=-1$ and $x=1$. The approximate gradient ($\mathrm{d}=0.001$):
When $x=-1$ the gradient is -2
When $x=1$ the gradient is 2 [The graph is symmetrical so the result should not be surprising.]

Question: 4.

Plotting the points on the graph reveals that the result appears to be a cosine curve.
Note: The calculator MUST be in radians!
Comment: The Taylor polynomial for $\sin (x)$ where x is measured in radians is given by:

$$
s(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!} \ldots
$$

The 'power rule' for differentiation can be used to determine the rule for the derivative of $\sin (x)$.

Extension:

Define the function in $f(x)$ and make sure $g(x)$ is expressed as the gradient from first principles. Set d $=0.00001$ (small).

Enter some x values in List 1 and use $\mathrm{g}(\mathrm{x})$ [Formula] to generate list 2 .
Note that only three x values are required to perform quadratic regression.

Use Quadratic regression on List 1 and List 2. Don't store the equation as it will over-write you current function definitions. The regression analysis will return the coefficients: a, b \& c .

[^1]
[^0]: （c）Texas Instruments 2022．You may copy，communicate and modify this material for non－commercial educational purposes provided all acknowledgements associated with this material are maintained．

[^1]: (C) Texas Instruments 2022. You may copy, communicate and modify this material for non-commercial educational purposes

