Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.
Choose the response that is correct for the question.
A correct answer scores 1 ; an incorrect answer scores 0 .
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~ms}^{-2}$, where $g=9.8$

Question 1

The equation $3 x^{2}+3 y^{2}-7 b y+3=0$, where b is a real constant, will represent a circle if
A. $a<-\frac{6}{7}$ only
B. $a>\frac{6}{7}$ only
C. $a= \pm \frac{6}{7}$ only
D. $a<-\frac{6}{7}$ or $a>\frac{6}{7}$
E. $-\frac{6}{7}<a<\frac{6}{7}$

Question 2

The number of straight line asymptotes of the graph of $y=\frac{3 x^{3}-x^{2}+1}{x^{2}+x-2}$ is
A. 0
B. 1
C. 2
D. 3
E. 4

Question 3

The gradient of the hyperbola $\frac{y^{2}}{8}-\frac{x^{2}}{2}=2$ at any point is an element of the set
A. \mathbb{R}
B. $\mathbb{R} \backslash[-2,2]$
C. $\mathbb{R} \backslash(-2,2)$
D. $(-2,2)$
E. $[-2,2]$

Question 4

For $x \in(0, \pi) \backslash\left\{\frac{\pi}{2}\right\}$, the solutions to $2 \sin (x)>\frac{1}{2} \sec (x)$ are given by
A. $x \in\left(0, \frac{\pi}{12}\right)$
B. $x \in\left(\frac{\pi}{12}, \frac{5 \pi}{12}\right)$
C. $x \in\left(\frac{5 \pi}{12}, \frac{\pi}{2}\right)$
D. $x \in\left(\frac{\pi}{12}, \frac{5 \pi}{12}\right) \cup\left(\frac{\pi}{2}, \pi\right)$
E. $x \in\left(0, \frac{5 \pi}{12}\right) \cup\left(\frac{\pi}{2}, \pi\right)$

Question 5

If $g:\left(0, \frac{\pi}{6}\right) \rightarrow \mathbb{R}, g(x)=\operatorname{cosec}^{2}(3 x)+\sec ^{2}(3 x)$, which one of the following statements is false?
A. g has range $[4, \infty)$
B. g is identical to the function $g:\left(0, \frac{\pi}{6}\right) \rightarrow \mathbb{R}$ where $g(x)=\operatorname{cosec}^{2}(3 x) \sec ^{2}(3 x)$
C. g is identical to the function $g:\left(0, \frac{\pi}{6}\right) \rightarrow \mathbb{R}$ where $g(x)=\frac{8}{\cos (12 x)-1}$
D. $g^{\prime}\left(\frac{\pi}{12}\right)=0$
E. g is identical to the function $g:\left(0, \frac{\pi}{6}\right) \rightarrow \mathbb{R}$ where $g(x)=\frac{8}{1-\cos (12 x)}$

Question 6

Given that $A, B, C, D \in \mathbb{R} \backslash\{0\}$, the partial fraction form for the expression $\frac{3 x^{2}+10 x+8}{(3 x+4)^{3}\left(x^{2}-4\right)}$ is
A. $\frac{A}{x-2}+\frac{B}{3 x+4}+\frac{C}{(3 x+4)^{2}}$
B. $\frac{A}{x^{2}-4}+\frac{B}{3 x+4}+\frac{C}{(3 x+4)^{2}}+\frac{D}{(3 x+4)^{3}}$
C. $\frac{A x}{x^{2}-4}+\frac{B}{3 x+4}+\frac{C}{(3 x+4)^{2}}+\frac{D}{(3 x+4)^{3}}$
D. $\frac{A x+B}{x^{2}-4}+\frac{C x+D}{(3 x+4)^{3}}$
E. $\frac{A}{x-2}+\frac{B}{3 x+4}+\frac{C x}{(3 x+4)^{2}}$

Question 7

The number of distinct roots of the equation $\left(z^{4}-16\right)\left(z^{2}-2 i z+8\right)$, where $z \in \mathbb{C}$, is
A. 3
B. 4
C. 5
D. 6
E. 7

Question 8

The set of points in the complex plane defined by $|z|=|z+4|$ is
A. The point $z=-2$
B. The line $\operatorname{Re}(z)=2$
C. The line $\operatorname{Re}(z)=-2$
D. The circle with centre $(4,0)$ and radius 4
E. The circle with centre $(-4,0)$ and radius 4

Question 9

The polar form of the complex number $i-\sqrt{3}$ is
A. $2 \operatorname{cis}\left(-\frac{5 \pi}{6}\right)$
B. $2 \operatorname{cis}\left(\frac{5 \pi}{6}\right)$
C. $2 \operatorname{cis}\left(-\frac{\pi}{6}\right)$
D. $4 \operatorname{cis}\left(\frac{5 \pi}{6}\right)$
E. $2 \operatorname{cis}\left(\frac{2 \pi}{3}\right)$

Question 10

On an argand diagram, a set of points which lies on a circle of radius 3 centred at the origin is
A. $\{z \in \mathbb{C}: z \bar{z}=3\}$
B. $\left\{z \in \mathbb{C}: z^{2}=3\right\}$
C. $\left\{z \in \mathbb{C}: \operatorname{Re}\left(z^{2}\right)+\operatorname{Im}\left(z^{2}\right)=9\right\}$
D. $\left\{z \in \mathbb{C}:(z+\bar{z})^{2}-(z-\bar{z})^{2}=36\right\}$
E. $\left\{z \in \mathbb{C}:(\operatorname{Re}(z))^{2}+(\operatorname{Im}(z))^{2}=36\right\}$

Question 11

For the parametric equations $x=\sin (2 t)-\cos (2 t)$ and $y=\frac{1}{2} \sin (4 t), \frac{d y}{d x}$ in terms of t is
A. $\cos (2 t)+\sin (2 t)$
B. $\cos (2 t)-\sin (2 t)$
C. $\sec (2 t)+\operatorname{cosec}(2 t)$
D. $\sec (2 t)-\operatorname{cosec}(2 t)$
E. $\frac{\cos (4 t)}{\cos (2 t)-\sin (2 t)}$

Question 12

Let $f:\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right] \rightarrow \mathbb{R}, f(x)=\cos ^{3}(x)$. Using the substitution $u=\sin (x)$, the area bounded by the graph of f and the x-axis could be found by evaluating
A. $\int_{-\frac{\pi}{2}}^{\frac{3 \pi}{2}}\left(1-u^{2}\right) d u$
B. $\int_{-1}^{1}\left(1-u^{2}\right) d u$
C. $2 \int_{-1}^{1}\left(1-u^{2}\right) d u$
D. $2 \int_{-1}^{1}\left(u^{2}-1\right) d u$
E. $2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(1-u^{2}\right) d u$

Question 13

For the relation $e^{x} \sin ^{-1}(y)+e^{y} \sin ^{-1}(x)=0$, the value of $\frac{d^{2} y}{d x^{2}}$ at the origin is
A. 1
B. -1
C. 4
D. -4
E. 0

Question 14

The solution of the differential equation $\sqrt{4+x^{2}} \frac{d y}{d x}=2$, with $y(0)=0$, can be approximated using Euler's method with step size 0.1 . Using this method, the value obtained for y when $x=0.3$ is
A. 0.1000
B. 0.1999
C. 0.2989
D. 0.2994
E. 0.3994

Question 15

Two forces $\underset{\sim}{F}$ and $\underset{\sim}{F}$ act on an object. $\underset{\sim}{F}$ acts in the positive $\underset{\sim}{j}$ direction with magnitude 2
Newtons and $\underset{\sim}{F}$ acts in the direction of $\sqrt{3} \underset{\sim}{i}+\underset{\sim}{j}$ with magnitude 6 Newtons. The magnitude of the total force acting on the object, in Newtons, is
A. 8
B. $2 \sqrt{43}$
C. $2 \sqrt{13}$
D. $2 \sqrt{7}$
E. $2 \sqrt{2}$

Question 16

$A B C D$ is a parallelogram. The position vectors, respectively, of the points $A, B C$, and D are $\underset{\sim}{a}=-3 \underset{\sim}{k}, \underset{\sim}{b}=\underset{\sim}{i}+n \underset{\sim}{j}, \underset{\sim}{c}=5 \underset{\sim}{i}+2 m \underset{\sim}{j}+\underset{\sim}{k}$ and $\underset{\sim}{d}=n \underset{\sim}{i}-2 \underset{\sim}{k}$. The values of m and n are
A. $m=0, n=5$
B. $m=2, n=4$
C. $m=3, n=6$
D. $m=8, n=6$
E. $m=12, n=6$

Question 17

A small pebble is projected vertically upwards with an initial velocity of $\frac{7 \sqrt{2}}{3} \mathrm{~ms}^{-1}$. It is subjected to gravity and air resistance. The acceleration of the pebble is described by the differential equation $\frac{d^{2} x}{d t^{2}}=-\left(g+0.3 v^{2}\right)$, where $x \mathrm{~m}$ and $v \mathrm{~ms}^{-1}$ are the pebble's vertical displacement and velocity respectively at time t seconds. The time taken for the pebble to reach its maximum height is
A. 5π seconds
B. $5 \sqrt{6} \pi$ seconds
C. $\frac{5 \sqrt{6} \pi}{126}$ seconds
D. $\frac{5 \sqrt{6} \pi}{12}$ seconds
E. $\frac{6 \sqrt{5} \pi}{126}$ seconds

Question 18

The length $L \mathrm{~cm}$ and width $W \mathrm{~cm}$ of a rectangle are independent normally distributed random variables, where $L \sim N\left(7,3^{2}\right)$ and $W \sim N\left(5,2^{2}\right)$. In terms of the standard normal variable Z, the probability that the rectangle's perimeter is greater than 50 cm is equivalent to
A. $\operatorname{Pr}(Z>50)$
B. $\operatorname{Pr}(Z<50)$
C. $\operatorname{Pr}(Z>2 \sqrt{13})$
D. $\operatorname{Pr}(Z>\sqrt{26})$
E. $\operatorname{Pr}(Z>\sqrt{13})$

Question 19

A random sample of 400 potatoes from a farm has a total mass of 10 kg and a standard deviation of
4 g . Assuming the standard deviation of the sample is a sufficiently accurate estimate of the population standard deviation, an approximate 90% confidence interval for the mean mass of potatoes, in grams, produced on this farm is given by
A. $(24.67,25.33)$
B. $(24.61,25.39)$
C. $(9999.67,10000.33)$
D. $(9999.61,10000.39)$
E. $(23.68,26.32)$

Question 20

The length of time a runner takes to complete the Melbourne Marathon is normally distributed with a mean of 4 hours and a standard deviation of 1 hour. The probability that the average time taken by a random sample of 10 runners is less than 3.5 hours is closest to
A. 0.3085
B. 0.0569
C. 0.9431
D. 0.6915
E. 0.4431

