Instructions for Section A

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions. Choose the response that is **correct** for the question. A correct answer scores 1; an incorrect answer scores 0. Marks will **not** be deducted for incorrect answers. No marks will be given if more than one answer is completed for any question. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8

Question 1

The equation $3x^2 + 3y^2 - 7by + 3 = 0$, where b is a real constant, will represent a circle if

A. $a < -\frac{6}{7}$ only **B.** $a > \frac{6}{7}$ only **C.** $a = \pm \frac{6}{7}$ only **D.** $a < -\frac{6}{7}$ or $a > \frac{6}{7}$ **E.** $-\frac{6}{7} < a < \frac{6}{7}$

Question 2

The number of straight line asymptotes of the graph of $y = \frac{3x^3 - x^2 + 1}{x^2 + x - 2}$ is

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

Question 3

The gradient of the hyperbola $\frac{y^2}{8} - \frac{x^2}{2} = 2$ at any point is an element of the set **A.** \mathbb{R} **B.** $\mathbb{R} \setminus [-2,2]$

- **C.** $\mathbb{R} \setminus (-2,2)$
- **D.** (-2,2)
- **E.** [-2,2]

For
$$x \in (0,\pi) \setminus \left\{\frac{\pi}{2}\right\}$$
, the solutions to $2\sin(x) > \frac{1}{2}\sec(x)$ are given by
A. $x \in \left(0, \frac{\pi}{12}\right)$
B. $x \in \left(\frac{\pi}{12}, \frac{5\pi}{12}\right)$
C. $x \in \left(\frac{5\pi}{12}, \frac{\pi}{2}\right)$
D. $x \in \left(\frac{\pi}{12}, \frac{5\pi}{12}\right) \cup \left(\frac{\pi}{2}, \pi\right)$
E. $x \in \left(0, \frac{5\pi}{12}\right) \cup \left(\frac{\pi}{2}, \pi\right)$

Question 5

If $g:\left(0,\frac{\pi}{6}\right) \to \mathbb{R}$, $g(x) = \csc^2(3x) + \sec^2(3x)$, which one of the following statements is false? **A.** g has range $[4,\infty)$

B. g is identical to the function $g: (0, \frac{\pi}{6}) \to \mathbb{R}$ where $g(x) = \csc^2(3x) \sec^2(3x)$

C. g is identical to the function $g:\left(0,\frac{\pi}{6}\right) \to \mathbb{R}$ where $g(x) = \frac{8}{\cos(12x) - 1}$

 $\mathbf{D.} \quad g'\left(\frac{\pi}{12}\right) = 0$

E. g is identical to the function $g:\left(0,\frac{\pi}{6}\right) \to \mathbb{R}$ where $g(x) = \frac{8}{1 - \cos(12x)}$

Question 6

Given that A, B, C, $D \in \mathbb{R} \setminus \{0\}$, the partial fraction form for the expression $\frac{3x^2 + 10x + 8}{(3x+4)^3(x^2-4)}$ is

A.
$$\frac{A}{x-2} + \frac{B}{3x+4} + \frac{C}{(3x+4)^2}$$

B. $\frac{A}{x^2-4} + \frac{B}{3x+4} + \frac{C}{(3x+4)^2} + \frac{D}{(3x+4)^3}$
C. $\frac{Ax}{x^2-4} + \frac{B}{3x+4} + \frac{C}{(3x+4)^2} + \frac{D}{(3x+4)^3}$
D. $\frac{Ax+B}{x^2-4} + \frac{Cx+D}{(3x+4)^3}$
E. $\frac{A}{x-2} + \frac{B}{3x+4} + \frac{Cx}{(3x+4)^2}$
Author Stephen Crouch

Page | 2 of 6

The number of distinct roots of the equation $(z^4 - 16)(z^2 - 2iz + 8)$, where $z \in \mathbb{C}$, is

- **A.** 3
- **B.** 4
- **C.** 5
- **D.** 6
- **E.** 7

Question 8

The set of points in the complex plane defined by |z| = |z+4| is

- **A.** The point z = -2
- **B.** The line $\operatorname{Re}(z) = 2$
- C. The line $\operatorname{Re}(z) = -2$
- **D.** The circle with centre (4,0) and radius 4
- **E.** The circle with centre (-4,0) and radius 4

Question 9

The polar form of the complex number $i - \sqrt{3}$ is

A.
$$2\operatorname{cis}\left(-\frac{5\pi}{6}\right)$$

B. $2\operatorname{cis}\left(\frac{5\pi}{6}\right)$
C. $2\operatorname{cis}\left(-\frac{\pi}{6}\right)$
D. $4\operatorname{cis}\left(\frac{5\pi}{6}\right)$
E. $2\operatorname{cis}\left(\frac{2\pi}{3}\right)$

Question 10

On an argand diagram, a set of points which lies on a circle of radius 3 centred at the origin is **A.** $\{z \in \mathbb{C} : z\overline{z} = 3\}$

B.
$$\{z \in \mathbb{C} : z^2 = 3\}$$

C. $\{z \in \mathbb{C} : \operatorname{Re}(z^2) + \operatorname{Im}(z^2) = 9\}$
D. $\{z \in \mathbb{C} : (z + \overline{z})^2 - (z - \overline{z})^2 = 36\}$
E. $\{z \in \mathbb{C} : (\operatorname{Re}(z))^2 + (\operatorname{Im}(z))^2 = 36\}$

For the parametric equations $x = \sin(2t) - \cos(2t)$ and $y = \frac{1}{2}\sin(4t)$, $\frac{dy}{dx}$ in terms of t is

A. $\cos(2t) + \sin(2t)$ B. $\cos(2t) - \sin(2t)$ C. $\sec(2t) + \csc(2t)$ D. $\sec(2t) - \csc(2t)$ E. $\frac{\cos(4t)}{\cos(2t) - \sin(2t)}$

Question 12

Let $f:\left[-\frac{\pi}{2},\frac{3\pi}{2}\right] \to \mathbb{R}$, $f(x) = \cos^3(x)$. Using the substitution $u = \sin(x)$, the area bounded by the graph of f and the x-axis could be found by evaluating

A.
$$\int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} (1-u^{2}) du$$

B.
$$\int_{-1}^{1} (1-u^{2}) du$$

C.
$$2\int_{-1}^{1} (1-u^{2}) du$$

D.
$$2\int_{-1}^{1} (u^{2}-1) du$$

E.
$$2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1-u^{2}) du$$

Question 13

For the relation $e^x \sin^{-1}(y) + e^y \sin^{-1}(x) = 0$, the value of $\frac{d^2 y}{dx^2}$ at the origin is

A. 1 **B.** −1

C. 4

D. -4

E. 0

Question 14

The solution of the differential equation $\sqrt{4 + x^2} \frac{dy}{dx} = 2$, with y(0) = 0, can be approximated using Euler's method with step size 0.1. Using this method, the value obtained for y when x = 0.3 is

- **A.** 0.1000
- **B.** 0.1999
- **C.** 0.2989
- **D.** 0.2994
- **E.** 0.3994

```
Author: Stephen Crouch
```


Two forces E_1 and E_2 act on an object. E_1 acts in the positive j direction with magnitude 2

Newtons and F_2 acts in the direction of $\sqrt{3i} + j$ with magnitude 6 Newtons. The magnitude of the total force acting on the object, in Newtons, is

- **A.** 8
- **B.** $2\sqrt{43}$
- **C.** $2\sqrt{13}$
- **D.** $2\sqrt{7}$
- **E.** $2\sqrt{2}$

Question 16

ABCD is a parallelogram. The position vectors, respectively, of the points A, B C, and D are a = -3k, b = i + nj, c = 5i + 2mj + k and d = ni - 2k. The values of m and n are A. m = 0, n = 5B. m = 2, n = 4C. m = 3, n = 6D. m = 8, n = 6E. m = 12, n = 6

Question 17

A small pebble is projected vertically upwards with an initial velocity of $\frac{7\sqrt{2}}{3}$ ms⁻¹. It is subjected to gravity and air resistance. The acceleration of the pebble is described by the differential equation $\frac{d^2x}{dt^2} = -(g + 0.3v^2)$, where x m and v ms⁻¹ are the pebble's vertical displacement and velocity respectively at time t seconds. The time taken for the pebble to reach its maximum height is **A.** 5π seconds

B. $5\sqrt{6\pi}$ seconds **C.** $\frac{5\sqrt{6\pi}}{126}$ seconds **D.** $\frac{5\sqrt{6\pi}}{5\sqrt{6\pi}}$ seconds

E.
$$\frac{6\sqrt{5}\pi}{126}$$
 seconds

The length L cm and width W cm of a rectangle are independent normally distributed random variables, where $L \sim N(7,3^2)$ and $W \sim N(5,2^2)$. In terms of the standard normal variable Z, the probability that the rectangle's perimeter is greater than 50 cm is equivalent to A. Pr(Z > 50)

- **B.** $\Pr(Z < 50)$
- C. $\Pr(Z > 2\sqrt{13})$
- **D.** $\Pr\left(Z > \sqrt{26}\right)$
- **E.** $\Pr(Z > \sqrt{13})$

Question 19

A random sample of 400 potatoes from a farm has a total mass of 10 kg and a standard deviation of 4 g. Assuming the standard deviation of the sample is a sufficiently accurate estimate of the population standard deviation, an approximate 90% confidence interval for the mean mass of potatoes, in grams, produced on this farm is given by

- **A.** (24.67,25.33)
- **B.** (24.61, 25.39)
- C. (9999.67,10000.33)
- **D.** (9999.61,10000.39)
- **E.** (23.68, 26.32)

Question 20

The length of time a runner takes to complete the Melbourne Marathon is normally distributed with a mean of 4 hours and a standard deviation of 1 hour. The probability that the average time taken by a random sample of 10 runners is less than 3.5 hours is closest to

- **A.** 0.3085
- **B.** 0.0569
- **C.** 0.9431
- **D.** 0.6915
- **E.** 0.4431

