Z-Scores

Question: 2.

Lizzie scored 15 out of 20 shots from the free throw line in basketball. If the National average is 13 with a standard deviation of 3 , determine Lizzie's standardised score.

Question: 3.

Jessie owns a $\$ 950,000$ house in a major capital city. The house prices in her current city are normally distributed with an average of $\$ 855,000$ and standard deviation of $\$ 90,000$. Jessie plans to move to another city where the average house price is $\$ 790,00$ and a standard deviation of $\$ 60,000$. She wants to move into a comparable price bracket and is currently considering three houses:
(a) $\$ 780,000$.
(b) $\$ 835,000$.
(c) $\$ 855,000$.
(d) $\$ 885,000$

Which of the four houses is closest in comparison?
\qquad

Question: 4.

Dani visits the Royal Children's Hospital for a check up on her 2 year old son. The hospital uses a growth chart and notes that Dani's little boy is in the 97% percentile corresponding to a z-score of approximately 2 . If the mean height of two year old boys is 87 cm with a standard deviation of 3 cms , what is the height of Dani's boy?
\qquad
\qquad

Question: 5.

John is 190 cm tall. The average male height is normally distributed with a mean of 175 cm and a standard deviation of 7.4 cm . Jenny is 178 cm tall. The mean height of women is 161 cm with a standard deviation of 6.9 cm . Which person is 'statistically' taller, John or Jenny?

Answers

Question 1
z-score: $\frac{x-\mu}{\sigma}=\frac{33-30}{8}=\frac{3}{8}$
Question 2
z-score: $\frac{x-\mu}{\sigma}=\frac{15-13}{3}=\frac{2}{3}$
Question 3
Jessie's current z score: $=\frac{x-\mu}{\sigma}=\frac{950,000-855,000}{90,000}=1.055 \ldots$
One approach would be to apply this z-score to the new city. $1.055 \ldots=\frac{x-790,000}{60,000}$ which means $x=853,333$
This means option (c) would be the most comparable.
Another approach to the problem is to determine each of the z-scores for the new distribution:
Option (a) is definitely wrong as it is below the average of the new city.
Option (b) has a z score of 0.75
Option (c) has a z score of 1.083 [Closest z score]
Option (d) has a z score of 1.58
Question 4
z-score: $\frac{x-\mu}{\sigma}=\frac{x-87}{3}=2$ which means Danni's little boy is not so little at 93 cm .
Question 5
John's z-score: $\frac{x-\mu}{\sigma}=\frac{190-175}{7.4} \approx 2.027$
Jenny's z-score: $\frac{x-\mu}{\sigma}=\frac{178-161}{6.9} \approx 2.46$
This means that statistically speaking, Jenny is taller. She is a greater number of standard deviations from the mean than John.

