STUDENT REVISION SERIES

AREAS UNDER & BETWEEN CURVES

Each of the questions included here can be solved using TI-Nspire CX. Question 1

Find the area of the region enclosed by the graphs of $y = x\sqrt{x+1}$ and y = 2x.

Question 2

Find the area enclosed by $f(x) = 24 - 2x - 2x^2$ and the x-axis.

Question 3

Find the area enclosed by the graph of $f(x) = e^{5x} - 2\sin(4x)$, the x-axis and the end points x = -1 and x = 1.

Question 4

Determine the signed area and the physical enclosed by the graph of $f(x) = (x - 2)(x - 4)(x + 1)^2$ and the x-axis.

For the graph shown at the right, find the area of the shaded region.

Question 6

For the function $y = \ln(5x + e) - 1$, determine the area under the curve between x = 0 and x = 29. Then decide where a vertical line should be placed to divide this area exactly in half?

Question 7

Use the trapezoidal rule with *n*=5 to approximate the area under the curve $f(x) = \frac{1}{x}$ from x = 2 to x = 3.

Question 8

The size of a bacterial colony on an agar plate increases with time according to the formula: $G(t) = \frac{15}{t^2+1}$ where G(t) is the increase in the area covered (cm²) after *t* hours. Using the trapezoidal rule, find the area covered after 5 hours.

- Questions used in this worksheet were sourced from/inspired by:

 • https://www.qcaa.gld.edu.au/senior/senior-subjects/mathematics/mathematics-methods/assessment
 - Mathematical Methods Units3 & 4 for Queensland, Cambridge University Press •

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained. Author: M Hourigan

STUDENT REVISION SERIES

Mathematical Methods Unit 3: AREAS UNDER & BETWEEN CURVES

SOLUTIONS

Question 1

Find the area of the region enclosed by the graphs of $y = x\sqrt{x+1}$ and y = 2x

Graph Page:

Question 2

Find the area enclosed by $f(x) = 24 - 2x - 2x^2$ and the x-axis. Graph Page:

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained. Author: M Hourigan

Find the area enclosed by the graph of $f(x) = e^{5x} - 2\sin(4x)$, the x-axis and the end points x = -1 and x = 1.

(Also graphed are the relations x=-1 and x=1 – not required but helpful)

Area is both above and below the x-axis, area will be calculated in 2 parts.

Graph Page:

Menu->6:**Analyze Graph***x*-intercept = -0.788

Find Area Under each part of **Menu-**>6:**Analyze Graph**-

```
Enclosed area = |-
= 30.071
```

Calculator Page:

Graph the function

Identify x-intercept

Question 4

Determine the signed area and the physical enclosed by the graph of $f(x) = (x - 2)(x - 4)(x + 1)^2$ and the x-axis

Graph Page:

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained. Author: M Hourigan

For the graph shown at the right, find the area of the shaded region **Graph Page:**

Graph Function

Question 6

For the function $y = \ln(5x + e) - 1$, determine the area under the curve between x = 0 and x = 29. Then decide where a vertical line should be placed to divide this area exactly in half? Graph Page:

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Use the trapezoidal rule with *n*=5 to approximate the area under the curve $f(x) = \frac{1}{x}$ from x = 2 to x = 3With 5 trapezoids between x=2 and x=3 the width of each trapezoid = $\frac{1}{5}$ or 0.2

Lists & Spreadsheets Page:

1, 1.	1 🕨		*Do	0	RAD 📋	Х
=	Ax		B lengths =1/'x	С	D	
1		2	1/2			
2		2.2	0.454545			
3		2.4	0.416667			
4		2.6	0.384615			•
B1	$=\frac{1}{2}$				4	•

Find the lengths of the parallel sides of each trapezoid using lists and spreadsheets page Area = $\frac{b-a}{2n} [f(x1) + 2f(x2) + 2(fx3) + 2f(x4) + f(x5)]$ = $\frac{1}{10} [\frac{1}{2} + 2 * \frac{1}{2.2} + 2 * \frac{1}{2.4} + 2 * \frac{1}{2.6} + 2 * \frac{1}{2.8} + \frac{1}{3}]$ = 0.4114units² Can check approximation using graph page or calculator page $\int_{2}^{3} \frac{1}{x} dx$

Question 8

The size of a bacterial colony on an agar plate increases with time according to the formula: $G(t) = \frac{15}{t^2+1}$ where G(t) is the increase in the area covered (cm²) after *t* hours. Using the trapezoidal rule, find the area covered after 5 hours. Graphs Page: To view the area

