AREAS UNDER \& BETWEEN CURVES

Each of the questions included here can be solved using TI-Nspire CX. Question 1
Find the area of the region enclosed by the graphs of $y=x \sqrt{x+1}$ and $y=2 x$.
\qquad
\qquad
\qquad

Question 2

Find the area enclosed by $f(x)=24-2 x-2 x^{2}$ and the x-axis.
\qquad
\qquad
\qquad

Question 3
Find the area enclosed by the graph of $f(x)=e^{5 x}-2 \sin (4 x)$, the x-axis and the end points $x=-1$ and $x=1$.
\qquad
\qquad
\qquad

Question 4
Determine the signed area and the physical enclosed by the graph of $f(x)=(x-2)(x-4)(x+1)^{2}$ and the x axis.
\qquad
\qquad
\qquad
\qquad

Question 5

For the graph shown at the right, find the area of the shaded region.

\qquad
\qquad

Question 6

For the function $y=\ln (5 x+e)-1$, determine the area under the curve between $x=0$ and $x=29$. Then decide where a vertical line should be placed to divide this area exactly in half?
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7

Use the trapezoidal rule with $n=5$ to approximate the area under the curve $f(x)=\frac{1}{x}$ from $x=2$ to $x=3$.
\qquad
\qquad
\qquad

Question 8

The size of a bacterial colony on an agar plate increases with time according to the formula: $G(t)=\frac{15}{t^{2}+1}$ where $G(t)$ is the increase in the area covered $\left(\mathrm{cm}^{2}\right)$ after t hours. Using the trapezoidal rule, find the area covered after 5 hours.
\qquad
\qquad
\qquad

Questions used in this worksheet were sourced from/inspired by:

- https://www.qcaa.qld.edu.au/senior/senior-subjects/mathematics/mathematics-methods/assessment
- Mathematical Methods Units3 \& 4 for Queensland, Cambridge University Press
© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with

Mathematical Methods

Unit 3: AREAS UNDER \& BETWEEN CURVES SOLUTIONS

Question 1

Find the area of the region enclosed by the graphs of $y=x \sqrt{x+1}$ and $y=2 x$
Graph Page:

Enter the 2 functions
Identify points of intersection
Menu->6:Analyze Graph->4:Intersection

Identify the Bounded Region
Menu->6:Analyze Graph->7:Bounded Area
Lower Boundary=0
Upper Boundary = 3

Enclosed area $=1.27$ units 2

Question 2
Find the area enclosed by $f(x)=24-2 x-2 x^{2}$ and the x-axis.
Graph Page:
4 1.k:

Enter the function

Find the x-intercepts (zeros)
Menu->6:Analyze Graph->1:Zeros

Select Integral from Menu Menu->6:Analyze GraphUse x-intercepts as the lower Lower Boundary =-4
Upper Boundary $=3$
Area $=114$ units 2
>6 :Integral
and upper boundary

Question 3

Find the area enclosed by the graph of $f(x)=e^{5 x}-2 \sin (4 x)$, the x-axis and the end points $x=-1$ and $x=1$.

Graph Page:

Menu->6:Analyze Graph-x-intercept $=-0.788$

Find Area Under each part of Menu->6:Analyze Graph-

Enclosed area = $\mid-$

$$
=30.071
$$

Calculator Page:

1.1 1.2 *Doc	RAD \times
$\int_{-1}^{\frac{-\pi}{4}}\left(e^{5 \cdot x}-2 \cdot \sin (4 \cdot x)\right) d x$	-0.170585
$\int_{\frac{-\pi}{4}}^{1}\left(e^{5 \cdot x}-2 \cdot \sin (4 \cdot x)\right) d x$	29.8519

Graph the function
(Also graphed are the relations $x=-1$ and $x=1-$ not required but helpful)

Area is both above and below the x-axis, area will be calculated in 2 parts.
Identify x-intercept

Enclosed area $=30.0225$

Question 4

Determine the signed area and the physical enclosed by the graph of $f(x)=(x-2)(x-4)(x+1)^{2}$ and the x axis

Graph Page:

Graph the function
As the function is in factorised form the x-intercepts are -1, 2, 4

Signed Area $=\int_{-1}^{4} f(x) d x$

Menu->6:Analyze Graph>6 :Integral
Lower Boundary =-1 Upper Boundary = 4

Area $=5^{* 10-14}$
Approx. 0 units ${ }^{2}$

Physical Area:

Calculate area in 2 parts

Area $=21.6+|-21.6|$
$=43.2 u_{n i t s}{ }^{2}$

Question 5

For the graph shown at the right, find the area of the shaded region
Graph Page:
Graph Function
Find the coordinates for points $B(x=1)$ and $C(x=3)$

Use Area Between Menu->6:Analyze
Lower Boundary =1
Upper Boundary $=3$
Shaded area $=1 \frac{1}{3}$

Menu->5:Trace $x=1$ point $=(1,3)$
Therefore line BC is at $y=3$
Graph y=3

Curves
Graph->7:Bounded Area
units ${ }^{2}$

Question 6

For the function $y=\ln (5 x+e)-1$, determine the area under the curve between $x=0$ and $x=29$. Then decide where a vertical line should be placed to divide this area exactly in half?
Graph Page:

Enclosed Area $=89$ units ${ }^{2}$
Half of Enclosed Area $=\frac{89}{2}$

$$
=49.5 \text { units }^{2}
$$

Use Calculator Page \& Numerical Solve:
Check on Graph page by finding Integral between $x=0$ and $x=18.578$

The vertical line should be placed at $x=18.578$ to halve the original area.

Question 7

Use the trapezoidal rule with $n=5$ to approximate the area under the curve $f(x)=\frac{1}{x}$ from $x=2$ to $x=3$
With 5 trapezoids between $x=2$ and $x=3$ the width of each trapezoid $=\frac{1}{5}$ or 0.2

Lists \& Spreadsheets Page:

4.2.1	*Doc		rad $] \times$	
AX		B lengths C	D	-
$=$		$=1 / \mathrm{\prime} \times$		
1	2	1/2		
2	2.2	0.454545		
3	2.4	0.416667		
4	2.6	0.384615		
$B 1=\frac{1}{2}$				

Find the lengths of the parallel sides of each trapezoid using lists and spreadsheets page
Area $=\frac{b-a}{2 n}[f(x 1)+2 f(x 2)+2(f x 3)+2 f(x 4)+f(x 5)]$
$=\frac{1}{10}\left[\frac{1}{2}+2 * \frac{1}{2.2}+2 * \frac{1}{2.4}+2 * \frac{1}{2.6}+2 * \frac{1}{2.8}+\frac{1}{3}\right]$
$=0.4114$ units 2
Can check approximation using graph page or calculator page $\int_{2}^{3} \frac{1}{x} d x$

Question 8

The size of a bacterial colony on an agar plate increases with time according to the formula: $G(t)=\frac{15}{t^{2}+1}$ where $G(t)$ is the increase in the area covered $\left(\mathrm{cm}^{2}\right)$ after t hours. Using the trapezoidal rule, find the area covered after 5 hours.
Graphs Page: To view the area

1 cm .

$$
\begin{aligned}
\text { Area } & =\frac{b-a}{2 n}[f(x 1)+ \\
& =\frac{5}{2 * 5}[15+2 * \\
& =20.67 \mathrm{~cm}^{2}
\end{aligned}
$$

Lists \& Spreadsheets Page:
Find the lengths of the parallel sides of trapezoids - let $n=5$ so width of each trapezoid is

$$
\begin{aligned}
& 2 f(x 2)+2(f x 3)+2 f(x 4)+2 f(x 5)+f(x 6)] \\
& \left.7.5+2 * 3+2 * 1.5+2 * \frac{15}{17}+\frac{15}{26}\right]
\end{aligned}
$$

The bacterial colony will cover approx. $20.67 \mathrm{~cm}^{2}$ after 5 hours.

