STUDENT REVISION SERIES

Complex Numbers Part 2

Question: 1.

If $z=a c i s\left(\frac{\pi}{b}\right), a, b \neq 0$, then $(\bar{z})^{-1}$ is equal to:
A. $\frac{1}{a} c i s\left(\frac{\pi}{b}\right)$
B. $\frac{1}{a} \operatorname{cis}\left(-\frac{\pi}{b}\right)$
C. $\frac{1}{a} c i s\left(\frac{b}{\pi}\right)$
D. $\frac{1}{a} \operatorname{cis}\left(-\frac{b}{\pi}\right)$
E. $\bar{a} \operatorname{cis}\left(\frac{b}{\pi}\right)$

Question: 2.
If $z=-a+a i$ where $a>0$ then $\operatorname{Arg}\left(z^{3}\right)$ is equal to:
A $\frac{27 \pi^{3}}{64}$

B $\quad \frac{\pi}{4}$

C $\quad-\frac{\pi}{4}$
D $\frac{9 \pi}{4}$
E $\frac{3 \pi}{4}$

Question: 3.

If $w^{2}=16$ cis $\left(\frac{\pi}{3}\right)$ then a possible value of w is:
A. 4 cis $\left(\frac{\pi}{6}\right)$
B. $4 \operatorname{cis}\left(\frac{2 \pi}{3}\right)$
C. $8 \operatorname{cis}\left(\frac{\pi}{6}\right)$
D. $16 \operatorname{cis}\left(\frac{\pi}{6}\right)$
E. $32 c i s\left(\frac{2 \pi}{3}\right)$

Question: 4.

In the complex plane, the point $2-i$ lies on the graph of the relation
A. $\quad \operatorname{Arg}(z)=\frac{\pi}{6}$
B. $\quad|z|=|z+1|$
C. $\quad 2 \operatorname{Re}(z)=\operatorname{Im}(z)$
D. $|z-2|=1$
E. $\quad(\bar{z})^{2}=2 z$

Question: 5.

Sets of points in the complex plane are defined by

$$
S=\{z:|z+1-2 i|=5\} \text { and } T=\{z: \operatorname{Re}(z)+2 \operatorname{Im}(z)=8\}
$$

Find the coordinates of the points of intersection between S and T.

Question: 6.

Find cube roots of $-27 i$. Give your answer in the form $a+b i, a, b \in R$.

Question: 7.
Find the values of n for which: $(\sqrt{3}+i)^{n}-(\sqrt{3}-i)^{n}=0$.

Question: 8.

Given that $z=(b+i)^{2}, b \in R^{+}$, find the value of b when $\operatorname{Arg}(z)=\frac{\pi}{6}$.

Question: 9.

Given that $|z|=2 \sqrt{5}$, find the complex number z that satisfies the equation

$$
\frac{25}{z}-\frac{15}{\bar{z}}=1-8 i
$$

Question: 10.

The complex number w has been plotted on an Argand diagram, as shown below.

where $a>0$.
a) Express w in Cartesian form and in polar form.

The complex number z_{1} is a root of $z^{3}=w$, where $z_{1}=k \operatorname{cis}\left(\frac{\pi}{m}\right)$ for $k, m \in Z$.
Given that $a=4$,
b) determine the values of k and m,
c) find the remaining roots.

Answers

Question 1 Answer: A
Set your document in polar

Question 2 Answer: B

Question $3 \quad$ Answer: A

Question 4 Answer: D

Method 1

Draw a ray in answer A

Check B (perpendicular bisector)

4.14 .2	4.3
$\left(\sqrt{x^{2}+y^{2}}=\sqrt{x^{2}+2 \cdot x+y^{2}+1}\right)^{2}$	
$x^{2}+y^{2}=x^{2}+2 \cdot x+y^{2}+1$	
$\left(x^{2}+y^{2}=x^{2}+2 \cdot x+y^{2}+1\right)-x^{2}$	$y^{2}=2 \cdot x+y^{2}+1$
$\left(y^{2}=2 \cdot x+y^{2}+1\right)-y^{2}$	$0=2 \cdot x+1$
solve $(0=2 \cdot x+1, x)$	$x=\frac{-1}{2}$

B is incorrect

Draw in Relations and Trace, enter $x=2$

A is incorrect
Check C

1.12 .1	*Doc	RAD $\square \times$
$z:=x+y \cdot i$		$x+y \cdot \boldsymbol{i}$
$2 \cdot \operatorname{real}(z)=\operatorname{imag}(z)$		$2 \cdot x=y$

C is incorrect

Check D

D is correct

Method 2

	Rad $\square^{\text {] }}$
$z:=2-i$	$2-\boldsymbol{i}$
$\text { angle }(z)=\frac{\pi}{6}$	false
$\|z\|=\|z+1\|$	false
$2 \cdot \operatorname{real}(z)=\operatorname{imag}(z)$	false
$\|z-2\|=1$	trule
	\checkmark

Question 5

$(2,6)$ and $(3,5)$

Question 6

$$
\frac{3 \sqrt{3}}{2}-\frac{3}{2} i, 3 i,-\frac{3 \sqrt{3}}{2}-\frac{3}{2} i
$$

Find the first cube root. Start in polar form and convert to Rectangular

Find the other two roots in polar form and convert to cartesian.

Second root:

$1.1{ }^{1.2}$	${ }^{\text {PDoc }}$
$\frac{-\pi}{6}+\frac{2 \cdot \pi}{3}$	$\frac{\pi}{2}$
$3 \cdot \mathrm{e}^{\frac{\pi}{2} \cdot \boldsymbol{i}}$	$3 \cdot i$
1	

Check:

$1.1{ }^{1.2}$	FDoc
$\left(\frac{-3 \cdot \sqrt{3}}{2}-\frac{3}{2} \cdot \boldsymbol{i}\right)^{3}$	RAD $] \times$
$(3 \cdot \boldsymbol{i})^{3}$	$-27 \cdot \boldsymbol{i}$
$\left(\frac{3 \cdot \sqrt{3}}{2}-\frac{3}{2} \cdot \boldsymbol{i}\right)^{3}$	$-27 \cdot \boldsymbol{i}$
1	$-27 \cdot \boldsymbol{i}$

Question 7

$n=6 k, k \in Z$.

Deduce that it only has an imaginary part, real parts cancel out. Therefore, the equation is zero when

which gives us the same answer as a general solution to a trig equation.

Alternatively:
Convert to polar first, subtract to see the result.

Question 8

Question 9

$z=2+4 i$

Question 10

a) $w=a-a \sqrt{3} i ; w=2 a \operatorname{cis}\left(-\frac{\pi}{3}\right)$.
b) $k=2, m=-9$
c) $z_{2}=2 \operatorname{cis}\left(\frac{5 \pi}{9}\right), z_{3}=2 \operatorname{cis}\left(-\frac{7 \pi}{9}\right)$
a) Convert to polar with condition $a>0$.

b) With CAS in polar setting, set $a=4$ and then raise the obtained answer to the power of $1 / 3$.

c) The remaining roots are evenly spread over the circle with radius 2 every $\frac{2 \pi}{3}$:

$1.5 \quad 1.6$	1.7	*Doc
$\frac{-\pi}{9}+\frac{2 \cdot \pi}{3}$		$\frac{5 \cdot \pi}{9}$
$\frac{5 \cdot \pi}{9}+\frac{2 \cdot \pi}{3}$	$\frac{11 \cdot \pi}{9}$	
1		

and express with a principal argument.

