STUDENT REVISION SERIES

Complex Numbers Part 2

Question: 1.

If
$$z = a \operatorname{cis}\left(\frac{\pi}{b}\right)$$
, $a, b \neq 0$, then $(\overline{z})^{-1}$ is equal to:
A. $\frac{1}{a} \operatorname{cis}\left(\frac{\pi}{b}\right)$
B. $\frac{1}{a} \operatorname{cis}\left(-\frac{\pi}{b}\right)$
C. $\frac{1}{a} \operatorname{cis}\left(\frac{b}{\pi}\right)$
D. $\frac{1}{a} \operatorname{cis}\left(-\frac{b}{\pi}\right)$
E. $\overline{a} \operatorname{cis}\left(\frac{b}{\pi}\right)$

Question: 2.

If z = -a + ai where a > 0 then $Arg(z^3)$ is equal to:

$$A \qquad \frac{27\pi^3}{64}$$
$$B \qquad \frac{\pi}{4}$$
$$C \qquad -\frac{\pi}{4}$$
$$D \qquad \frac{9\pi}{4}$$
$$E \qquad \frac{3\pi}{4}$$

Author: B Graham

Question: 3.

If
$$w^2 = 16cis\left(\frac{\pi}{3}\right)$$
 then a possible value of w is:
A. $4cis\left(\frac{\pi}{6}\right)$ B. $4cis\left(\frac{2\pi}{3}\right)$ C. $8cis\left(\frac{\pi}{6}\right)$ D. $16cis\left(\frac{\pi}{6}\right)$ E. $32cis\left(\frac{2\pi}{3}\right)$

Question: 4.

In the complex plane, the point 2-i lies on the graph of the relation

A.
$$\operatorname{Arg}(z) = \frac{\pi}{6}$$

B. $|z| = |z+1|$
C. $2\operatorname{Re}(z) = \operatorname{Im}(z)$
D. $|z-2| = 1$
E. $(\overline{z})^2 = 2z$

Question: 5.

Sets of points in the complex plane are defined by

$$S = \{z : |z+1-2i| = 5\} \text{ and } T = \{z : \operatorname{Re}(z) + 2\operatorname{Im}(z) = 8\}$$

Find the coordinates of the points of intersection between S and T.

Question: 6.

Find cube roots of -27i. Give your answer in the form a + bi, $a, b \in R$.

Question: 7.

Find the values of *n* for which: $(\sqrt{3} + i)^n - (\sqrt{3} - i)^n = 0$.

Question: 8.

Given that $z = (b+i)^2$, $b \in R^+$, find the value of b when $\operatorname{Arg}(z) = \frac{\pi}{6}$.

Question: 9.

Given that $|z| = 2\sqrt{5}$, find the complex number *z* that satisfies the equation

$$\frac{25}{z} - \frac{15}{\overline{z}} = 1 - 8i$$

Question: 10.

The complex number *w* has been plotted on an Argand diagram, as shown below.

where a > 0.

a) Express *w* in Cartesian form and in polar form.

The complex number z_1 is a root of $z^3 = w$, where $z_1 = k \operatorname{cis}\left(\frac{\pi}{m}\right)$ for $k, m \in \mathbb{Z}$.

Given that a = 4,

- b) determine the values of k and m,
- c) find the remaining roots.

Answers

Question 1 Answer: A

	document		

Document Setting	IS	∢ 1.1	Þ	*Doc	rad 📘 🗙
Display Digits:	Float 6		<i>i</i> • π		<i>i</i> • π
Angle:	Radian 🕨	A z:=	$=e^{b} \cdot a$	е	^b .a
Exponential Format:	Normal 🕨		())-1		<i>i</i> • π
Real or Complex:	Polar 🔫		$onj(z))^{-1}$		b
Calculation Mode:	Real Rectangular				e ^o
CAS Mode:					u
	OK Cancel				~

Question 2 Answer: B

∢ 1.1 ▶	*Doc	rad 📘 🗙
z:=-a+a• i		-a+a• i
$angle(z^3) a>0$		<u>π</u>
		4
	ν.	-

Question 3 Answer: A

1.1 2.1 3.1 ▶	*Doc	RAD 📘 🗙
$\frac{\pi}{z:=16 \cdot e^{-3}} \cdot i$		8+8•√3 • <i>i</i>
\sqrt{z}		2•√3 +2• i
(2• √3 +2• <i>i</i>)▶ Polar		$\frac{i\cdot\pi}{e^{6}\cdot4}$
		*

Question 4 Answer: D

Method 1

Draw a ray in answer A

Check B (perpendicular bisector)

B is incorrect

Draw in Relations and Trace, enter x=2

C is incorrect

D is correct

Method 2

4 2.1 3.1 4.1 ▶*Complex out	rad 📘 🗙
z:=2-i	2-i
$angle(z) = \frac{\pi}{6}$	false
z = z+1	false
$2 \cdot \operatorname{real}(z) = \operatorname{imag}(z)$	false
z-2 =1	trile
	•

Question 5

(2,6) and (3,5)

$$\frac{3\sqrt{3}}{2} - \frac{3}{2}i, \ 3i, \ -\frac{3\sqrt{3}}{2} - \frac{3}{2}i$$

Find the first cube root. Start in polar form and convert to Rectangular

Find the other two roots in polar form and convert to cartesian.

Third root:

◀ 1.1 1.2 ▶	*Doc	rad 📘 🗙
$\frac{\pi}{3 \cdot e^2} \cdot i$		3• i 🗖
$\frac{\pi}{2} + \frac{2 \cdot \pi}{3}$		$\frac{7 \cdot \pi}{6}$
$\frac{7 \cdot \pi}{3 \cdot e} \cdot i$		$\frac{-3\cdot\sqrt{3}}{2}-\frac{3}{2}\cdot i$
		•

Check:

1.1 1.2 ▶	*Doc	rad 📘 🗙
$\left(\frac{-3\cdot\sqrt{3}}{2}-\frac{3}{2}\cdot\mathbf{i}\right)^3$		-27• i
(3· <i>i</i>) ³		-27• i
$\left(\frac{3\cdot\sqrt{3}}{2}-\frac{3}{2}\cdot\mathbf{i}\right)^3$		-27• i
1		*

 $n = 6k, k \in \mathbb{Z}$.

Deduce that it only has an imaginary part, real parts cancel out. Therefore, the equation is zero when

which gives us the same answer as a general solution to a trig equation.

Alternatively:

Convert to polar first, subtract to see the result.

Question 9

z = 2 + 4i

a)
$$w = a - a\sqrt{3}i; w = 2a cis\left(-\frac{\pi}{3}\right).$$

b) k = 2, m = -9

c)
$$z_2 = 2 \operatorname{cis}\left(\frac{5\pi}{9}\right), z_3 = 2 \operatorname{cis}\left(-\frac{7\pi}{9}\right)$$

a) Convert to polar with condition a>0.

1.4 1.5 1.6 ▶ *	Doc	rad 🚺 🗙
$(a-a\cdot\sqrt{3}\cdot i)$ Polar		^
	$\frac{\left(-a\cdot\sqrt{3}\right)\cdot\pi}{2}+\frac{\pi}{6}$	· 2· a
$e^{i \cdot \left(\frac{\operatorname{sign}(-a \cdot \sqrt{3}) \cdot \pi}{2} + \frac{\pi}{6}\right)}$	<u>t</u> 5). 2. a a>0	
	$e^{\frac{-i\cdot\pi}{3}}$	• 2• a

b) With CAS in polar setting, set a = 4 and then raise the obtained answer to the power of 1/3.

c) The remaining roots are evenly spread over the circle with radius 2 every $\frac{2\pi}{3}$:

and express with a principal argument.