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Each of the questions included here can be solved using TI-Nspire CX. 
Question 1  

Find the gradient of the curve 𝑦 = sin(2𝑥) − 1 at (0,-1).S 
 
 

 
 

 
 

 

Question 2 

Find the equation of the normal to the curve 𝑦 = 𝑒𝑥 + 2 at 𝑥 = 0. 
 
 

 
 

 
 

 
 

Question 3 

A population of bacteria after 𝑡 hours is given by 𝑃(𝑡) = 5000𝑒0.18𝑡 . Calculate the rate of increase of the population (to 
the nearest unit) at 15 minutes. 
 

 
 

 
 

 
 

 
 
Question 4 

A particle moves along the 𝑥-axis with position at time, 𝑡, given by 𝑥(𝑡) = -𝑒𝑡 cos(𝑡) for 0 ≤ 𝑡 ≤ 2𝜋. Calculate each time, 
𝑡, for which the particle is at rest. (hint: use maximum and minimum) 
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Question 5 

The number of rabbits increases according to the model 𝑛(𝑡) = 𝐴𝑒bt , where 𝑡 is time in years, 𝑛(𝑡) is the population size 
at time 𝑡, 𝐴 is the initial size of the population and 𝑏 is the relative rate of growth.  
Rabbits were introduced to a small island 7 years ago. The current rabbit population on the island is estimated to be 
3600, with a relative growth rate of 45% per year.  
Determine when the population is increasing at a rate of 5000 rabbits per year. 
 
 

 
 

 
 

 
 

 
Question 6 
Rainwater is being collected in a water tank. The rate of change of volume, V litres, with respect to time, t seconds, is 

given by  
𝑑𝑉

𝑑𝑡
=  

2𝑡3

3
+  

3𝑡2

2
+ 𝑡 . Determine the volume of water that is collected in the tank between t=2 and t=5. 

 
 

 
 

 
 

 
 

 
Question 7 

Find the value of ∫ (2𝑥 − 3𝑥
1

2) 𝑑𝑥
4

1
 

 

 
 

 
 

 
Question 8 

Find the value of ∫
𝑒𝑥+𝑒−𝑥

2

1

−1
 𝑑𝑥 
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Question 9 
A particle moves in a straight line. The velocity of the particle, v m/s, at time, t seconds, is given by v=2t−3 for t ≥0. Find 
the particle’s displacement after 4 seconds. 
 

 
 

 
 

 
Question 10 

Heat escapes from a storage tank at the rate of 
𝑑𝐻

𝑑𝑡
= 1 +

3

4
sin (

𝜋𝑡

60
) kilojoules per day. If H(t) is the total accumulated 

heat loss at time t days, find the amount of heat lost in the first 150 days. 
 
 

 
 

 
 

 
 

  

Questions used in this worksheet were sourced from/inspired by: 

 https://www.qcaa.qld.edu.au/senior/senior-subjects/mathematics/mathematics-methods/assessment 
 Mathematical Methods Units3 & 4 for Queensland, Cambridge University Press 

https://www.qcaa.qld.edu.au/senior/senior-subjects/mathematics/mathematics-methods/assessment
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Question 1  

Find the gradient of the curve 𝑦 = sin(2𝑥) − 1 at (0,-1). 
Gradient of graph is equal to the value of the derivative at the point (0,-1).  Need to find derivative at point. 
Gradient at (0,-1) = 2. 

Option 1 – Graph Page: 
Enter function 
Menu - >Analyze Graph -> dy/dx 
Place point at x=0 
 

Option 2 – Calculator Page: 
Use template key 
Choose derivative, Enter function followed by condition 
x=0 

 
 
 
 
 
 
 

 
 

 
Question 2 

Find the equation of the normal to the curve 𝑦 = 𝑒𝑥 + 2 at 𝑥 = 0. 

Equation of normal 𝑦 = 𝑚𝑥 + 𝑐 

𝑚𝑛 =  
−1

𝑚𝑡
  

𝑚𝑡 =  
𝑑𝑦

𝑑𝑥
 𝑎𝑡 𝑥 = 0 

 

Graph Page: 

𝑚𝑡 =  1 
 

𝑚𝑛 =  
−1

𝑚𝑡
  

𝑚𝑛 =  
−1

1
 

  

𝑚𝑛 =  −1 
Point (0,2) 

𝑦 = 𝑚𝑥 + 𝑐 
2 =  −1 ∗ 0 + 𝑐 
2 = 𝑐 
Equation of normal is 𝑦 = −𝑥 + 2 
 

 
 
  

 
 
 

Mathematical Methods 
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Question 3 

A population of bacteria after 𝑡 hours is given by 𝑃(𝑡) = 5000𝑒0.18𝑡 . Calculate the rate of increase of the population (to 
the nearest unit) at 15 minutes. 
Rate of increase of population is the value of derivative at t = 0.25   (15min is ¼ of an hour) 

Option 1 – Graph page: 
Graph the function 
Change the window 
 
 
 
 
 
Menu->Analyze Graph->dy/dx 
Place point at x = 0.25 
 
 
Rate = 941 
          
The rate of increase of the 
population is 941 bacteria/hour 
at 15min 

 

Option 2 – Calculator page: 
Use template key 
Choose derivative, Enter function followed by 
condition x=0.25 
 

 
Rate = 941.425  given it is bacteria the solution is: 
 
The rate of increase of the population is 941 
bacteria/hour after 15min 

 
Question 4 

A particle moves along the 𝑥-axis with position at time 𝑡 given by 𝑥(𝑡) = -𝑒𝑡 cos(𝑡) for 0 ≤ 𝑡 ≤ 2𝜋. Calculate each time 𝑡 
for which the particle is at rest. (hint: use maximum and minimum) 
Particle is at rest when the derivative = 0 (stationary point) 

Graph the function 
Change the window settings 
 
Derivative = 0 at stationary points 
Stationary points occur  at maximums and minimums 
 
 
Menu->6:Analyze Graph->2:Minimum 
Identify boundaries 
 
Menu->6:Analyze Graph->3:Maximum 
Identify boundaries 
 
The stationary points are at (0.785,-1.55) and (3.93,35.9) 
The particle is at rest when t=0.785 and t=3.93 

                                            t=
𝜋

4
               t=

5𝜋

4
         (found by dividing x values by ) 
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Question 5 

The number of rabbits increases according to the model 𝑛(𝑡) = 𝐴𝑒bt , where 𝑡 is time in years, 𝑛(𝑡) is the population size 
at time 𝑡, 𝐴 is the initial size of the population and 𝑏 is the relative rate of growth.  
Rabbits were introduced to a small island 7 years ago. The current rabbit population on the island is estimated to be 
3600, with a relative growth rate of 45% per year.  
Determine when the population is increasing at a rate of 5000 rabbits per year. 
𝑛(𝑡) = 𝐴𝑒bt where t=7 n(t) = 3600 and b=0.45 , find the value of A 

Using Calculator page 
Menu->3:Algebra->1:Numerical Solve 
A is the initial size of the rabbit population so must be a whole number 
A=154 
 

𝑛(𝑡) = 154𝑒0.45𝑡 
Determine when n’(t) = 5000 

𝑛′(𝑡) = 0.45 ∗ 154𝑒0.45𝑡 
Graph page                                                                                                         

Enter derivative function                           
Enter f(x)=5000                          
Find Point of Intersection 

 
 
Menu->6:Analyze Graph->4:Intersection 

 

 
 
Intersection is at t=9.51 
 
Therefore the population will be 
increasing at a rate of 5000 
rabbits/year during the 10th year. 

Calculator Page 
 Use Numerical Solve 
Enter 0.45*154e0.45x=5000 

 
 
 
 
 
 
 
 

Solution is t=9.5 
Therefore the population will be increasing 
at a rate of 5000 rabbits/year during the 
10th year. 

 
Question 6 
Rainwater is being collected in a water tank. The rate of change of volume, V litres, with respect to time, t seconds, is 

given by  
𝑑𝑉

𝑑𝑡
=  

2𝑡3

3
+  

3𝑡2

2
+ 𝑡 . Determine the volume of water that is collected in the tank between t=2 and t=5. 

Integrate to find equation for Volume of water (V), then find V when t=2 and t=5, calculate the difference. 
OR use Integral between t=2 and t=5 
Graph Page 

Graph function 
Menu->6:Analyze Graph->6:Integral 
Lowerboundary = 2 
Upperboundary=5 

 
Integral is 

171 
There would be 171L of water 
collected between 2 and 5 
seconds. 

Calculator Page 
Using template key 
 
Choose Integral 
 
Enter function with end 

points 
 
Integral is 170.5 
There would be 
approx. 171L of water 
collected. 
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Question 7 

Find the value of ∫ (2𝑥 − 3𝑥
1

2) 𝑑𝑥
4

1
 

Calculator Page: 
Use template key 
Choose Integral 
Enter integral 
 

∫ (2𝑥 − 3𝑥
1
2) 𝑑𝑥

4

1

= 1 

 

 
Question 8 

Find the value of ∫
𝑒𝑥+𝑒−𝑥

2

1

−1
 𝑑𝑥 

Calculator Page: 
Use template key 
Choose Integral 
Enter integral 
 

∫ (
𝑒𝑥 + 𝑒−𝑥

2
) 𝑑𝑥

1

−1

= 2.35 

 

 
Question 9 
A particle moves in a straight line. The velocity of the particle, v m/s, at time, t seconds, is given by v=2t−3 for t ≥0. Find 
the particle’s displacement after 4 seconds. 

Displacement = ∫ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

Calculator Page: 
Use template key 
Choose Integral 
Enter integral 
 

∫ (2𝑡 − 3)𝑑𝑡
4

0

= 4 

The particle’s displacement after 4 seconds is 4m 

 
Question 10 

Heat escapes from a storage tank at the rate of 
𝑑𝐻

𝑑𝑡
= 1 +

3

4
sin (

𝜋𝑡

60
) kilojoules per day. If H(t) is the total accumulated 

heat loss at time t days, find the amount of heat lost in the first 150 days. 

Amount of heat lost in first 150days = ∫
𝑑𝐻

𝑑𝑡
 𝑑𝑡

150

0
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Graph Page: 
Graph function 
Menu->6:Analyze Graph->6:Integral 
Lowerboundary = 0 
Upperboundary=150 
 
During the first 150 days, 164kJ of heat 
was lost. 

Calculator Page: 
 
Use template key 
Choose Integral 
Enter integral 
 

 


