Each of the questions included here can be solved using TI-Nspire CX.
Question 1
Find the gradient of the curve $y=\sin (2 x)-1$ at $(0,-1)$.S
\qquad
\qquad
\qquad

Question 2

Find the equation of the normal to the curve $y=e^{x}+2$ at $x=0$.
\qquad
\qquad
\qquad

Question 3

A population of bacteria after t hours is given by $P(t)=5000 e^{0.18 t}$. Calculate the rate of increase of the population (to the nearest unit) at 15 minutes.
\qquad
\qquad
\qquad
\qquad

Question 4

A particle moves along the x-axis with position at time, t, given by $x(t)=-e^{t} \cos (t)$ for $0 \leq t \leq 2 \pi$. Calculate each time, t, for which the particle is at rest. (hint: use maximum and minimum)
\qquad
\qquad
\qquad

Question 5

The number of rabbits increases according to the model $n(t)=A e^{\text {bt }}$, where t is time in years, $n(t)$ is the population size at time t, A is the initial size of the population and b is the relative rate of growth.
Rabbits were introduced to a small island 7 years ago. The current rabbit population on the island is estimated to be 3600 , with a relative growth rate of 45% per year.
Determine when the population is increasing at a rate of 5000 rabbits per year.
\qquad
\qquad
\qquad
\qquad

Question 6

Rainwater is being collected in a water tank. The rate of change of volume, V litres, with respect to time, t seconds, is given by $\frac{d V}{d t}=\frac{2 t^{3}}{3}+\frac{3 t^{2}}{2}+t$. Determine the volume of water that is collected in the tank between $t=2$ and $t=5$.
\qquad
\qquad
\qquad
\qquad
Question 7
Find the value of $\int_{1}^{4}\left(2 x-3 x^{\frac{1}{2}}\right) d x$
\qquad
\qquad
\qquad

Question 8

Find the value of $\int_{-1}^{1} \frac{e^{x}+e^{-x}}{2} d x$
\qquad
\qquad
\qquad

Question 9

A particle moves in a straight line. The velocity of the particle, $v \mathrm{~m} / \mathrm{s}$, at time, t seconds, is given by $v=2 t-3$ for $t \geq 0$. Find the particle's displacement after 4 seconds.
\qquad
\qquad
\qquad
Question 10
Heat escapes from a storage tank at the rate of $\frac{d H}{d t}=1+\frac{3}{4} \sin \left(\frac{\pi t}{60}\right)$ kilojoules per day. If $\mathrm{H}(\mathrm{t})$ is the total accumulated heat loss at time t days, find the amount of heat lost in the first 150 days.

Questions used in this worksheet were sourced from/inspired by:

- https://www.qcaa.qld.edu.au/senior/senior-subjects/mathematics/mathematics-methods/assessment
- Mathematical Methods Units3 \& 4 for Queensland, Cambridge University Press

STUDENT REVISION SERIES

Mathematical Methods

Unit 3: FURTHER CALCULUS \& INTEGRATION SOLUTIONS

Question 1

Find the gradient of the curve $y=\sin (2 x)-1$ at $(0,-1)$.
Gradient of graph is equal to the value of the derivative at the point $(0,-1)$. Need to find derivative at point.
Gradient at $(0,-1)=2$.
Option 1 - Graph Page:
Enter function
Menu - >Analyze Graph -> dy/dx
Place point at $x=0$

Option 2 - Calculator Page:

Use template key
Choose derivative, Enter function followed by condition $x=0$

Question 2

Find the equation of the normal to the curve $y=e^{x}+2$ at $x=0$.
Equation of normal $y=m x+c$
$m_{n}=\frac{-1}{m_{t}}$
$m_{t}=\frac{d y}{d x}$ at $x=0$

$$
\begin{aligned}
& \text { Graph Page: } \\
& m_{t}=1 \\
& m_{n}=\frac{-1}{m_{t}} \\
& m_{n}=\frac{-1}{1} \\
& m_{n}=-1 \\
& \text { Point }(0,2) \\
& y=m x+c \\
& 2=-1 * 0+c \\
& 2=c \\
& \text { Equation of normal is } y=-x+2
\end{aligned}
$$

Question 3

A population of bacteria after t hours is given by $P(t)=5000 e^{0.18 t}$. Calculate the rate of increase of the population (to the nearest unit) at 15 minutes.
Rate of increase of population is the value of derivative at $t=0.25$ (15 min is $1 / 4$ of an hour)

Option 1 - Graph page:

Graph the function
Change the window

Menu->Analyze Graph->dy/dx Place point at $x=0.25$

Rate $=941$
The rate of increase of the population is 941 bacteria/hour at 15 min

Option 2 - Calculator page:
Use template key
Choose derivative, Enter function followed by condition $x=0.25$

Rate $=941.425$ given it is bacteria the solution is:
The rate of increase of the population is 941 bacteria/hour after 15 min

Question 4

A particle moves along the x-axis with position at time t given by $x(t)=-e^{t} \cos (t)$ for $0 \leq t \leq 2 \pi$. Calculate each time t for which the particle is at rest. (hint: use maximum and minimum)
Particle is at rest when the derivative $=0$ (stationary point)

Graph the function
Change the window settings
Derivative $=0$ at stationary points
Stationary points occur at maximums and minimums

Menu->6:Analyze Graph->2:Minimum
Identify boundaries
Menu->6:Analyze Graph->3:Maximum
Identify boundaries
The stationary points are at $(0.785,-1.55)$ and $(3.93,35.9)$
The particle is at rest when $t=0.785$ and $t=3.93$

$$
\mathrm{t}=\frac{\pi}{4} \quad \mathrm{t}=\frac{5 \pi}{4} \quad \text { (found by dividing } \mathrm{x} \text { values by } \pi \text {) }
$$

Question 5

The number of rabbits increases according to the model $n(t)=A e^{\text {bt }}$, where t is time in years, $n(t)$ is the population size at time t, A is the initial size of the population and b is the relative rate of growth.
Rabbits were introduced to a small island 7 years ago. The current rabbit population on the island is estimated to be 3600 , with a relative growth rate of 45% per year.
Determine when the population is increasing at a rate of 5000 rabbits per year.
$n(t)=A e^{\text {bt }}$ where $t=7 n(t)=3600$ and $b=0.45$, find the value of A

41.1	*Doc	Rat \square^{\times}
nSolve ${ }^{\text {(}}$		154.268
।		

Using Calculator page

Menu->3:Algebra->1:Numerical Solve
A is the initial size of the rabbit population so must be a whole number $A=154$
$n(t)=154 e^{0.45 t}$
Determine when $n^{\prime}(t)=5000$
$n^{\prime}(t)=0.45 * 154 e^{0.45 t}$
Graph page

Enter derivative function
Enter $f(x)=5000$
Find Point of Intersection

Menu->6:Analyze Graph->4:Intersection

Intersection is at $t=9.51$
Therefore the population increasing at a rate of

will
be
5000
rabbits/year during the $10^{\text {th }}$ year.

Calculator Page
Use Numerical Solve
Enter $0.45 * 154 e^{0.45 x=5000}$

Solution is $t=9.5$
Therefore the population will be increasing at a rate of 5000 rabbits/year during the $10^{\text {th }}$ year.

Question 6

Rainwater is being collected in a water tank. The rate of change of volume, V litres, with respect to time, t seconds, is given by $\frac{d V}{d t}=\frac{2 t^{3}}{3}+\frac{3 t^{2}}{2}+t$. Determine the volume of water that is collected in the tank between $t=2$ and $t=5$. Integrate to find equation for Volume of water (V), then find V when $\mathrm{t}=2$ and $\mathrm{t}=5$, calculate the difference.
OR use Integral between $t=2$ and $t=5$

Graph Page

Calculator Page

points
Integral is 170.5
There would be approx. 171L of water collected.

Question 7

Find the value of $\int_{1}^{4}\left(2 x-3 x^{\frac{1}{2}}\right) d x$
Calculator Page:

1.1. \% Doc	molx	Use template key
$\left.\int_{1}^{4} 4.2 x-3 . x^{0.5}\right)^{4} \mathrm{dx}$	1.	Choose Integral Enter integral
,		$\int_{1}^{4}\left(2 x-3 x^{\frac{1}{2}}\right) d x=1$

Question 8

Find the value of $\int_{-1}^{1} \frac{e^{x}+e^{-x}}{2} d x$
Calculator Page:

Question 9

A particle moves in a straight line. The velocity of the particle, $v \mathrm{~m} / \mathrm{s}$, at time, t seconds, is given by $v=2 t-3$ for $t \geq 0$. Find the particle's displacement after 4 seconds.
Displacement $=\int$ velocity

Calculator Page:

	- oc	Rova	
$\\| \int_{0}^{4} \int_{0}^{4}$		4.	
1			

Use template key
Choose Integral
Enter integral
$\int_{0}^{4}(2 t-3) d t=4$
The particle's displacement after 4 seconds is 4 m

Question 10

Heat escapes from a storage tank at the rate of $\frac{d H}{d t}=1+\frac{3}{4} \sin \left(\frac{\pi t}{60}\right)$ kilojoules per day. If $\mathrm{H}(\mathrm{t})$ is the total accumulated heat loss at time t days, find the amount of heat lost in the first 150 days.
Amount of heat lost in first 150days $=\int_{0}^{150} \frac{d H}{d t} d t$

Graph Page:

Graph function
Menu->6:Analyze Graph->6:Integral
Lowerboundary = 0
Upperboundary=150
During the first 150 days, 164kJ of heat was lost.

Calculator Page:

${ }^{1.15} 12{ }^{12}$	modx	
	${ }^{164324}$	Use template key
		Choose Integral
		Enter integral

