STUDENT REVISION SERIES

Mathematical Methods Exponential & logarithmic functions

Question 1

The function with rule $f(x) = 2^{-(x+1)} - 3$ is defined over its maximal domain. Write down the domain and range of f.

Question 2

Part of the graph of $y = e^x$ is shown. On the same set of axes, sketch the graphs of

- **a**. $y = e^{-x}$
- b. $y = -e^x$
- C. $y = -e^{-x}$
- d. $y = e^x + e^{-x}$
- **e.** $y = -(e^x + e^{-x})$

Use TI-Nspire to verify your graphs.

Question 3

Part of the graph of the function $g:[0,\infty) \to R$, $g(t) = 5te^{-\frac{3t}{2}}$ is shown. The range of g is [0,k].

Use a graphical method to find a rational approximation to the value of k, correct to **four decimal places**.

Question 4

Change both sides of the following exponential equations to the same base. Hence determine the value of x.

a. $16^{x} = \frac{1}{8}$ b. $9^{x-2} = 27$

c. $125^{x-2} = 25^{3x+2}$

Verify your answers using TI-Nspire.

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Frank Moya

Question 5

If $y = 3^x$, show that $9^x = 2 \times 3^x + 3$ can be expressed as $y^2 - 2y - 3 = 0$. Solve $y^2 - 2y - 3 = 0$ for y, and hence find the value(s) of x that satisfy the equation $9^x = 2 \times 3^x + 3$. Verify your answer using TI-Nspire.

Question 6

Part of the graph of f, where $f(x) = 2^x$, is shown. On the same set of axes, use the reflection in the line y = x to sketch the graph of the inverse, $y = f^{-1}(x)$. Hence also sketch the graphs of a. $y = f^{-1}(-x)$ b. $y = -f^{-1}(x)$

The original graph has equation
$$y = 2^x$$
.

Given $a^y = x \Leftrightarrow y = \log_a(x)$ The inverse graph has equation $x = 2^y \Leftrightarrow y = \log_2(x)$.

Question 7

Part of the graph of the function f, where

 $f(x) = 2^{-(x+1)} - 3$, is shown.

The graph intersects the axes at points P and Q.

a. Determine the coordinates of P and Q.

b. Determine the gradient of the line segment PQ.

Question 8

The electrical charge, *C* units, stored by an electonic component at time *t* seconds, is modelled by the function $C(t) = 2000 \times 1.2^t$, $t \ge 0$.

- a. Determine the initial charge on the component.
- b. Determine the time taken for the amount of stored charge to double. Give the answer in seconds, correct to four decimal places.
- c. If the rule for C is expressed in the form $C(t) = 2000 \times e^{kt}$, determine the value of k to four decimal places.

Author: Frank Moya

Logarithm facts $-^{y} = r \Leftrightarrow y = \log_{10}(r)$

$$a^{y} = x \iff y = \log_{a}(x)$$

$$a^{\log_{a}(x)} = x$$

$$\log_{a}(a) = 1$$

$$\log_{a}(p \times q) = \log_{a}(p) + \log_{a}(q)$$

$$\log_{a}\left(\frac{p}{q}\right) = \log_{a}(p) - \log_{a}(q)$$

$$\log_{a}(x^{n}) = n\log_{a}(x)$$

Question 9

Use appropriate logarithm facts (see above) to solve the logarithm equations below. **Verify your answers using TI-Nspire.**

a. $\log_2(5x-9) = 4$

b.
$$2\log_e(x) - \log_e(x+3) = \log_e(x-1)$$

Question 10 (multiple choice)

If $2\log_e(x) - \log_e(x+3) - \log_e(p) = 0$, then

A.
$$x = \frac{-p \pm \sqrt{p^2 + 12p}}{2}$$

B. $x = \frac{p \pm \sqrt{p^2 + 12p}}{2}$
C. $x = \frac{p - \sqrt{p^2 + 12p}}{2}$
D. $x = \frac{p + \sqrt{p^2 + 12p}}{2}$
E. $x = \frac{-p - \sqrt{p^2 + 12p}}{2}$

2

ANSWERS

Answer: Q. 2

Answer: Q. 3

Range is [0, k]

k = 1.2263.... (correct to 4 decimal places) Graphical method. In TI-Nspire 'Graphs' application: Menu > Analyse Graph > Maximum.

Select lower and upper bounds, either side of the highest point on the graph. To increase or decrease decimal places, use the cursor to touch the coordinate and press the '+' or '-' key.

3.1 3.2 4.1 ► ***Exponent_lay** PAD ★ X

Answer: Q. 4

а.	b.	С.	4.1 5.1 6.1 ► Exponentilay R	RAD 🚺 🗙
$16^{x} = \frac{1}{2}$	$9^{x-2} = 27$	$125^{x-2} = 25^{3x+2}$		-3
$(2^4)^x - 2^{-3}$	$\left(3^2\right)^{x-2} = 3^3$	$\left(5^{3}\right)^{x-2} = \left(5^{2}\right)^{3x+2}$	$\operatorname{solve}\left(16^{X}=\frac{1}{8}x\right)$ x	4
$(2^{+}) = 2^{+}$	2x - 4 = 3	3x - 6 = 6x + 4	$solve(9^{x-2}=27.x)$	7
4x = -3	r – 7	-10 = 3x		2
$x = -\frac{3}{4}$	$x = \frac{1}{2}$	$x = -\frac{10}{3}$	$solve(125^{x-2}=25^{3\cdot x+2},x)$ x=	-10

Answer: Q. 5

$9^x = 2 \times 3^x + 3$	Solve for y	4.1 5.1 5.2 ▶ *Exponentlay
$3^{2x} - 2 \times 3^{x} - 3 = 0$	$y^2 - 2y - 3 = 0$	
$(2x)^2$ 2 2 2 2 2	(y-3)(y+1)=0	solve $(9^x = 2 \cdot 3^x + 3, x)$
$(3^{*}) - 2 \times 3^{*} - 3 = 0$	y = 3 (reject $y = -1$)	
Let $y = 3^{x}$ (N.B. $y = 3^{x} > 0$ for all x)	$3^x - 3$	
$v^{2} - 2v - 3 = 0$ (as required)	5 = 5	
5 5 (x = 1	

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Frank Moya

RAD 间

x=1

Answer: Q. 7

TI-Nspire calculations	Coordinates of <i>P</i>	Coordinates of <i>Q</i>	Gradient of PQ
2.1 2.2 2.3 *Exponent_lay PAD $f(x):=2^{-(x+1)}-3$ Done © Coordinates of P. x-intercept, y=0 solve($f(x)=0,x$) $x=\frac{-\ln(6)}{\ln(2)}$ $\frac{-\ln(6)}{\ln(2)}=-\log_2(6)$ true © Coordinates of Q. y-intercept, x=0 $f(0)$ $\frac{-5}{2}$ $g(6)-0$ $2^{-1}\log_2(6)$ $0-\frac{-5}{2}$ $\frac{-5}{2 \cdot \log(6)}$ $0-\frac{-5}{2}$ $\frac{-5 \cdot \ln(2)}{2 \cdot \ln(6)}$ $1-10(6)$ $10(2)$	x-intercept, $y = 0$ Using TI-Nspire $P\left(\frac{-\log_{e}(6)}{\log_{e}(2)}, 0\right)$ Or equivalent $P(-\log_{e}(6), 0)$ By-hand $0 = 2^{-(x+1)} - 3$ $-(x+1) = \log_{2}(3)$ $x = -1 - \log_{2}(3)$ $x = -(\log_{2}(2) + \log_{2}(3))$ $x = -\log_{2}(6)$ $P(-\log_{2}(6), 0)$	y-intercept, $x = 0$ Using TI-Nspire $Q\left(0, -\frac{5}{2}\right)$ By-hand $y = 2^{-(0+1)} - 3$ $y = 2^{-1} - 3$ $y = \frac{1}{2} - 3$ $y = -\frac{5}{2}$ $Q\left(0, -\frac{5}{2}\right)$	$m = \frac{y_p - y_Q}{x_p - x_Q}$ $m = \frac{0 - \left(-\frac{5}{2}\right)}{-\log_2(6) - 0}$ $m = -\frac{5}{2\log_2(6)}$ Or equivalent $m = -\frac{5\log_e(2)}{2\log_e(6)}$

Answer: O. 8

a. $c(0) = 2000$	5.1 5.2 6.1 ▶*Exponentlay		
b. Solve $c(t) = 4000$ for t	© Q.8 a		
t = 3.8018 correct to 4 decimal places	$c(t):=2000 \cdot (1.2)^t$	Done	
c Solve $c(t) = 2000e^{kt}$ for k	<i>c</i> (0)	2000.	
c cover $c(t) = 2000e^{-101} K$	© Q.8 b		
k = 0.1823 correct to 4 decimal places	solve(c(t)=4000,t)	<i>t</i> =3.80178	
	round(3.801784016923,4)	3.8018	
	© Q.8 c		
	solve $(c(t)=2000 \cdot e^{k \cdot t}, k)$	k=0.182322	
	round(0.182321556794,4)	0.1823 🗸	

Answer: Q. 9

5.2 6.1 7.1 ▶ Exponentilay	rad 🚺 🗙	9a. by-hand	9b. by-hand
© Q.9a	^	$\log_2(5x-9) = 4$	$2\log_e(x) - \log_e(x+3) = \log_e(x-1)$
solve $\left(\log_{2}(5\cdot x-9)=4,x\right)$	x=5	$5x-9=2^4$ 5x=16+9	$\log_e\left(\frac{x^2}{x+3}\right) = \log_e(x-1)$
© Q.9b		5x = 25	x^2 1
$solve(2 \cdot \ln(x) - \ln(x+3) = \ln(x-1), x)$	$x=\frac{3}{2}$	<i>x</i> = 5	$\frac{1}{x+3} = x-1$
	2		$x^2 = (x-1)(x+3)$
			$x^2 = x^2 + 2x - 3$
L	•		2x = 3
			$r=\frac{3}{2}$
			$x = \frac{1}{2}$

Answer: Q. 10

Solving $2\log_e(x) - \log_e(x+3) - \log_e(p) = 0$ for x gives solutions $x = \frac{p \pm \sqrt{p(p+12)}}{2}$. However, the solutions comes with a caution symbol! p > 0 and x > 0 because p, x are arguments of logarithms. Therefore $\mathbf{P} = x - \frac{p + \sqrt{p^2 + 12p}}{2} > 0$. Poince $x - \frac{p - \sqrt{p^2 + 12p}}{2} < 0$.

Therefore, **D.**
$$x = \frac{p + \sqrt{p^2 + 12p}}{2} > 0$$
. Reject $x = \frac{p - \sqrt{p^2 + 12p}}{2} < 0$

5.2 6.1 7.1 ▶*Exponentlay	RAD 📋	Х
© Q.10		
solve $(2 \cdot \ln(x) - \ln(x+3) - \ln(p) = 0, x)$ $x = \frac{-(\sqrt{p \cdot (p+12)} - p)}{2} \text{ or } x = \frac{\sqrt{p \cdot (p+12)}}{2}$	<u>)</u> +p	4

