STUDENT REVISION SERIES

Mathematical Methods

Unit 1: Functions and Graphs

Each of the questions included here can be solved using either the TI-Nspire CX or CX CAS.

Scan the QR code or use the link:

Question 1

Solve using technology $\begin{array}{lll}\text { (a) } 6-3 a=27 & \text { (b) } 2 b^{2}-5 b-12=0 & \text { (c) } x^{3}-6 x^{2}-x+30=0\end{array}$
\qquad
\qquad
\qquad

Question 2
Solve the simultaneous equations $2 m-3 n=-1$ and $5 m+2 n=26$

Question 3

If $g(x)=4 x-1$ and $h(x)=3 x^{2}+2 x-5$, evaluate $g(h(-2))$

Question 4

Solve the following simultaneous equations $y^{2}=x$ and $y=x-2$
\qquad
\qquad

Question 5

A section of a paddock is to be fenced off using an existing fence as part of the boundary. If 60 metres of fencing is available for the job, find the dimensions of the rectangular boundary that will give the maximum area.
\qquad
\qquad
\qquad
\qquad

Question 6

Determine the values of a and b given that the polynomial $P(x)=x^{3}+a x^{2}+2 x+b$ is divisible by $(x-1)$ and $(x+2)$.

Answers

Question 1

41.1 *Doc	fad $\square \times$
nSolve (6-3 $\cdot a=27, a)$	-7.
nSolve ($\left.2 \cdot b^{2}-5 \cdot b-12=0, b\right)$	-1.5
nSolve $\left(2 \cdot b^{2}-5 \cdot b-12=0, b\right) \mid b>-1.5$	4.

Numerically solve for (b) and test for solutions greater than or less than -1.5

In a Calculator application, press (men) and select Algebra, Polynomial Tools, Find Roots of Polynomial. Enter values of co-efficients and/or constant.

Solve using Zero in a Graphs application

41.1 * ${ }^{\text {* Doc }}$	Rad $]^{\times}$
polyRoots $\left(x^{3}-6 \cdot x^{2}-x+30, x\right)$	$\{-2,3,5\}$
polyRoots $\left(2 \cdot x^{2}-5 \cdot x-12, x\right)$	$\left\{\frac{-3}{2}, 4\right\}$

The solutions to part (b) are shown using the Polynomial Tools.

Question 2

In a Calculator application, press ment and select Algebra, Solve System of Linear Equations.

In a Graphs application, change the graph entry to a relation (press ment and select Graph Entry, Relation) and determine the point of intersection.

Question 3

1.1	PDoc
$g(x):=4 \cdot x-1$	Done
$h(x):=3 \cdot x^{2}+2 \cdot x-5$	Done
$g(h(-2))$	11

Question 4

In a Graphs application, change the graph entry to a relation (press (rems and select Graph Entry, Relation) and enter both relations.

Press (emen then select Geometry, Points \& Lines, Intersection Points and click on both graphs.

Question 5

Question 6

41.1 ${ }^{\text {- }}$ - ${ }^{\text {doc }}$	$\mathrm{PaO}_{\square}^{\text {] } \times}$
$p(x)=x^{3}+a \cdot x^{2}+2 \cdot x+b$	Done
linSolve $\left(\begin{array}{l}p(1)=0 \\ p(-2)=0\end{array},\{a, b\}\right)$	\{5,-8\}

In a Graphs application enter the function and change the window to see the graph.

Press nemu then select Analyse Graph, Maximum.

The factors are $x=1$ and $x=-2$
In a Calculator application define the function (be careful to use a multiplication between a and x).

Press (emm then select Algebra, Solve System of Linear Equations.

