STUDENT REVISION SERIES

Matrices Part 1

Question 1.

Represent the following as a matrix equation and solve using matrix operations

$$
\begin{gathered}
2 x+y-2 z=-1 \\
3 x-3 y-z=5 \\
x-2 y+3 z=6
\end{gathered}
$$

Question 2.

Find a solution for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ using the linsolve function.

$$
\begin{gathered}
3 x-4 y+2 z=-15 \\
2 x+4 y+z=16 \\
2 x+3 y+5 z=20
\end{gathered}
$$

Question 3.
Transform the following set of equations into row reduced echelon form and write down the solution set.

$$
\begin{gathered}
2 x-y+3 z=17 \\
-5 x+4 y-2 z=-46 \\
2 y+5 z=-7
\end{gathered}
$$

Question 4.

Show that the following set of equations has no solution.

$$
\begin{gathered}
x+y+z=2 \\
y-3 z=1 \\
2 x+y+5 z=0
\end{gathered}
$$

Question 5.

Show that the following system does not have a unique solution.

$$
\begin{gathered}
x+y+z=7 \\
3 x-2 y-z=4 \\
x+6 y+5 z=24
\end{gathered}
$$

Question 6.

Use Gaussian elimination (ie row operations) to solve the following system of equations.

$$
\begin{gathered}
2 x-y+3 z=17 \\
-5 x+4 y-2 z=-46 \\
2 y+5 z=-7
\end{gathered}
$$

Question 7

Determine if the following systems have unique solutions, infinite solutions or no solutions. Justify your response.
A)

$$
\begin{gathered}
2 x+3 y-6 z=1 \\
-4 x-6 y+12 z=-2 \\
x+2 y+5 z=10
\end{gathered}
$$

B)

$$
\begin{gathered}
x+y+z=14 \\
2 y+3 z=-14 \\
-16 y-24 z=-112
\end{gathered}
$$

C)

$$
\begin{gathered}
x+y+z=0 \\
2 x-y+3 z=0 \\
x-z=0
\end{gathered}
$$

Answer and solutions

Question 1.

Create matrix M and C as shown

$$
M \cdot X=C
$$

Where X is a column matrix containing the variable x, y, Z
Check $\operatorname{det}(M) \neq 0$ therefore unique solution exists

$$
\begin{gathered}
M^{-1} M \cdot X=M^{-1} C \\
X=M^{-1} C
\end{gathered}
$$

Solution

$$
\begin{gathered}
x=1 \\
y=-1 \\
z=1
\end{gathered}
$$

Question 2.

| 1 | |
| :--- | :--- | :--- | :--- |

Question 3.
Create the augmented matrix
Apply the rref() command to the augmented matrix
$x=4, y=-6, z=1$

Question 4.

Use rref0 or linsolve function

Bottom row is inconsistent $(0=1)$ therefore no unique solution.

Question 5.
Bottom row is an identity therefore infinite number of solutions.
$\mathrm{z}=\lambda$,

$$
\begin{aligned}
& y+\frac{4}{5} z=\frac{17}{5} \\
& y=\frac{17}{5}-\frac{4}{5} z \\
& y=\frac{17-4 z}{5} \\
& y=\frac{17-4 \lambda}{5}
\end{aligned}
$$

Similarly

$$
x=\frac{18-\lambda}{5}
$$

Alternative linsolve()

Question 6.

$\left[\begin{array}{cccc}2 & -1 & 3 & 17 \\ -5 & 4 & -2 & -46 \\ 0 & 2 & 5 & -7\end{array}\right] \quad\left[\begin{array}{cccc}2 & -1 & 3 & 17 \\ -5 & 4 & -2 & -46 \\ 0 & 2 & 5 & -7\end{array}\right]$
mRow $\left(0.5,\left[\begin{array}{cccc}2 & -1 & 3 & 17 \\ -5 & 4 & -2 & -46 \\ 0 & 2 & 5 & -7\end{array}\right], 1\right)\left[\begin{array}{cccc}1 . & -0.5 & 1.5 & 8.5 \\ -5 & 4 & -2 & -46 \\ 0 & 2 & 5 & -7\end{array}\right]$
mRowAdd $\left(5,\left[\begin{array}{cccc}1 . & -0.5 & 1.5 & 8.5 \\ -5 & 4 & -2 & -46 \\ 0 & 2 & 5 & -7\end{array}\right], 1,2\right)\left[\begin{array}{cccc}1 . & -0.5 & 1.5 & 8.5 \\ 0 . & 1.5 & 5.5 & -3.5 \\ 0 & 2 & 5 & -7\end{array}\right]$
mRow $\left(\frac{2}{3},\left[\begin{array}{cccc}1 . & -0.5 & 1.5 & 8.5 \\ 0 . & 1.5 & 5.5 & -3.5 \\ 0 & 2 & 5 & -7\end{array}\right], 2\right)\left[\begin{array}{cccc}1 . & -0.5 & 1.5 & 8.5 \\ 0 . & 1 . & 3.66667 & -2.33333 \\ 0 & 2 & 5 & -7\end{array}\right]$
mRowAdd $\left(-2,\left[\begin{array}{cccc}1 . & -0.5 & 1.5 & 8.5 \\ 0 . & 1 . & 3.6666666666667 & -2.3333333333333 \\ 0 & 2 & 5 & -7\end{array}\right], 2,3\right)$

$$
\left[\begin{array}{cccc}
1 . & -0.5 & 1.5 & 8.5 \\
0 . & 1 . & 3.66667 & -2.33333 \\
0 . & 0 . & -2.33333 & -2.33333
\end{array}\right]
$$

$\operatorname{mRow}\left(\frac{-3}{7},\left[\begin{array}{cccc}1 . & -0.5 & 1.5 & 8.5 \\ 0 . & 1 . & 3.6666666666667 & -2.33333333333333 \\ 0 . & 0 . & -2.3333333333334 & -2.3333333333334\end{array}\right], 3\right)$

$$
\left[\begin{array}{cccc}
1 . & -0.5 & 1.5 & 8.5 \\
0 . & 1 . & 3.66667 & -2.33333 \\
0 . & 0 . & 1 . & 1 .
\end{array}\right]
$$

mRowAdd $\left(\frac{-11}{3},\left[\begin{array}{cccc}1 . & -0.5 & 1.5 & 8.5 \\ 0 . & 1 . & 3.6666666666667 & -2.3333333333333 \\ 0 . & 0 . & 1 . & 1 .\end{array}\right], 3,2\right)$
$\left[\begin{array}{cccc}1 . & -0.5 & 1.5 & 8.5 \\ 0 . & 1 . & 0 . & -6 . \\ 0 . & 0 . & 1 . & 1 .\end{array}\right]$
mRowAdd $\left(-1.5,\left[\begin{array}{cccc}1 . & -0.5 & 1.5 & 8.5 \\ 0 . & 1 . & 0 . & -6 . \\ 0 . & 0 . & 1 . & 1 .\end{array}\right], 3,1\right)$
$\left[\begin{array}{cccc}1 . & -0.5 & 0 . & 7 . \\ 0 . & 1 . & 0 . & -6 . \\ 0 . & 0 . & 1 . & 1 .\end{array}\right]$
mRowAdd $\left(0.5,\left[\begin{array}{cccc}1 . & -0.5 & 0 . & 7 . \\ 0 . & 1 . & 0 . & -6 . \\ 0 . & 0 . & 1 . & 1 .\end{array}\right], 2,1\right)$

1. 0. 0. 4.
1. 2. 0. -6.
1. 0. 1. 2.

Question 7A.

$$
\begin{aligned}
& \text { linSolve }\left(\left\{\begin{array}{l}
2 \cdot x+3 \cdot y-6 \cdot z=1 \\
-4 \cdot x-6 \cdot y+12 \cdot z=-2,\{x, y, z\} \\
x+2 \cdot y+5 \cdot z=10
\end{array}\right)\right. \\
& \{27 \cdot \boldsymbol{c 1}-28,19-16 \cdot \boldsymbol{c 1}, \boldsymbol{c 1}\}
\end{aligned}
$$

Question 7B.
No Solution

$$
\text { linSolve }\left(\begin{array}{l}
x+y+z=14 \\
2 \cdot y+3 \cdot z=-14 \\
-16 \cdot y-24 \cdot z=-112
\end{array},\{x, y, z\}\right)
$$

"No solution found"

Question 7C.
Unique Solution

$$
\text { linSolve }\left(\left\{\begin{array}{l}
x+y+z=0 \\
2 \cdot x-y+3 \cdot z=0,\{x, y, z\} \\
x-z=0
\end{array}\right) \quad\{0,0,0\}\right.
$$

