STUDENT REVISION SERIES

Arithmetic and Geometric Sequences

Each of the questions included here can be solved using either the TI-Nspire CX or CX CAS.

Scan the QR code or use the link: https://bit.ly/sequence_and_series

Question 1

Determine the first eight terms of the sequence defined by $t_n = 2n + 7$

Question 2

Determine the first ten terms of the sequence $t_n = t_{n-1} + 7$ given $t_1 = 4$

Question 3

The fourth term in an arithmetic sequence is 27 and the tenth term is 63. What is the first term and the common difference?

Question 4

For the geometric sequence 5, 15, 45, ... determine how many terms are added together to obtain a sum of 5 465.

Question 5

The 1st term of a geometric sequence is 3 and the 12th term is 6 144. Determine the 9th term.

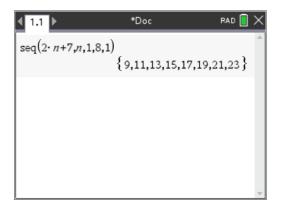
Question 6

The first three terms of an infinite geometric sequence are b-1, 6, b+4 where $b \in Z$

- (a) Determine the possible values of b
- (b) Determine the possible values of r
- (c) Calculate the sum of this infinite sequence

Questions used in this worksheet were sourced from/inspired by:

- https://www.gcaa.gld.edu.au/senior/senior-subjects/mathematics/mathematics-methods/assessment
- Mathematical Methods Units 1 & 2 for Queensland, Cambridge University Press


© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Rodney Anderson

Answers

Question 1

Question 2

∢ 1.1	Sequence		
=	Formula: u(n)=	u(n-1)+7	
-	Initial Terms:	4	
1	n0:	1	
2	nMax:	10	
3	nStep:	1	
4	Ceiling Value:		
5		OK Cancel	
Α	sedRen(" (" T)		

In a Lists and Spreadsheet application, press and select Data, Generate Sequence

Question 3

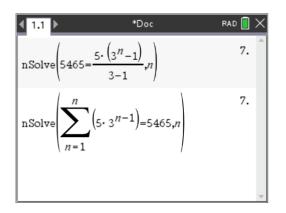
∢ 1.1 ▶	*Doc	rad 📘 🗙
t(n):=a+(n-1)	d	Done
$\ln \text{Solve} \left(\begin{cases} t(4) \\ t(1) \end{cases} \right)$		{9,6}
		~

Using a sequence command in a Calculator application.

Seq(Expression, Variable, Low, High, Step)

◀ 1.	1 🕨	*Do	c	rad 📘 🗙
	A	в	С	D
\equiv	=seqgen(l			
1	4			
2	11			
3	18			
4	25			
5	32			-
Α	<pre></pre>	−1)+7, <i>n</i> , <i>u</i> ,	{ 1,10 },{ 4	},1) ◀ →

If you click in the formula cell for column A the syntax is shown at the bottom (and this is the syntax for a Calculator application)


In a Calculator application, define the arithmetic sequence.

Press end select Algebra, Solve System of Linear Equations and modify the settings to suit your defined equation.

First term is 9 and the common difference is 6.

Question 4

Question 5

∢ 1.1 ▶	*Doc	RAD 📘	×
$t(n):=a \cdot r^{n-1}$		Done	Î
a:=3		3	I
nSolve $(t(12)=6144$	±,,,,)	2.	I
nSolve(t(12)=6144	, ,r) r<2		I
	"No so	lution found"	I
3·2 ⁹⁻¹		768	1
			▼

Question 6

∢ 1.1 ▶	*Doc	rad 📘 🗙
$nSolve\left(\frac{6}{b-1}=\right)$	$\left(\frac{b+4}{6},b\right) b<0$	-8.
$nSolve\left(\frac{6}{b-1}=\right)$	$\frac{b+4}{6},b$ $b>0$	5.
<u>6</u> -8-1		$\frac{-2}{3}$
		*

∢ 1.1 ▶	*Doc	rad 📘 🗙
-8-1		3
<u>6</u> 5-1		3 2
$\frac{-8-1}{1-\frac{-2}{3}}$		<u>-27</u> 5
		•

After determining that the ratio is 3, use Numerical Solve in a Calculator application.

Syntax in the brackets is equation, comma, variable.

Numerically solving using the sum command obtains the same answer.

Define the equation for a geometric sequence.

Define the first term to be 3.

Numerically solve to find r.

Check to see if there is a value for r < 2 (and you could also check to see if there is a value for r > 2).

With numerical solve, it only calculates one solution.

Solve for any negative values of *b*.

Solve for any positive values of *b*.

Be careful as sometimes the solutions can be both positive or both negative.

The ratio is either $\frac{-2}{3}$ or $\frac{3}{2}$

As the sum of the infinite sequence is required, r must be -1 < r < 1. Therefore, $r = \frac{-2}{3}$

Using first term b-1 and $r=\frac{-2}{3}$ and $S_{\infty}=\frac{a}{1-r}$

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Rodney Anderson

