STUDENT REVISION SERIES

Calculus 1

Question: 1.

Given that $f(x) = \arcsin\left(\frac{x}{2}\right)$, find $f''\left(\frac{3}{2}\right)$.

Question: 2.

Let $y = \arctan(2x)$. Find the value of a given that $\frac{d^2y}{dx^2} = ax\left(\frac{dy}{dx}\right)^2$, for $x \in \mathbb{R}$.

Question: 3.

Let $f(x) = -mx^3 + 3x^2 - 1$, where $m \in \mathbb{R}^+$. The gradient of f will always be strictly decreasing for:

A. $x \ge \frac{1}{m}$ B. $x \le \frac{1}{m}$ C. $x \ge \frac{2}{m}$ D. $x \le \frac{2}{m}$ E. $x \ge 0$

Question: 4.

The graph of the function f, where $f(x) = x^4 - 2x^3 + x$ is concave up for:

A.
$$x < 0$$
 and $x > 1$

B.
$$0 < x < 1$$

C.
$$\frac{1-\sqrt{3}}{2} < x < 1$$
 and $x > \frac{1+\sqrt{3}}{2}$

D.
$$x < \frac{1-\sqrt{3}}{2} \text{ and } 1 < x < \frac{1+\sqrt{3}}{2}$$

E.
$$x < \frac{1-\sqrt{3}}{2} \text{ and } x > \frac{1+\sqrt{3}}{2}$$

Question: 5.

The graph of y = f'(x) is shown. Which one of the following statements is true for the graph of y = f(x)?

- A. The graph has a local maximum at x = 3, a local minimum at x = 1, and a stationary point of inflection at x = 0
- B. The graph has a stationary point of inflection at x = 3 and a local maximum at x = 0
- C. The graph has a stationary point of inflection at x = 3 and a local minimum at x = 0
- D. The graph has a local maximum at x = 0, a stationary point of inflection at x = 1, and a stationary point of inflection at x = 3

 $\nu = f'(x)$

E. The graph has a local minimum at x = 3, a local maximum at x = 0, and a stationary point of inflection at x = 1

Question: 6.

- a. Find the stationary point of the graph of $f(x) = \frac{5+x^2+2x^3}{2x}$, $x \in \mathbb{R} \setminus \{0\}$. Express you answer as coordinates.
- b. Find the point of inflection of the graph given in part a. Express your answer as coordinates, giving your answer correct to two decimal places.
- c. Sketch the graphs of $f(x) = \frac{5+x^2+2x^3}{2x}$ for $x \in [-3, 3]$ on the axes below, labelling the turning point and the point of inflection with their coordinates, correct to two decimal places.

Question: 7.

Find the point of inflection(s) for the function $f(x) = (x - 1)^4 (x + 1)^3$. Express your answer as coordinates, giving your values correct to two decimal places.

Question: 8.

Let $g(x) = e^{-2x} f(x)$. There is a point of inflection on the graph of y = g(x) at (a, g(a)). An expression for f''(a) in terms of f'(a) and f(a) is:

A.
$$f''(a) = f(a) + f'(a)$$

B.
$$f''(a) = 4f(a)f'(a)$$

C.
$$f''(a) = 4f(a) + 4f'(a)$$

D.
$$f''(a) = \frac{f'(a)}{f(a)}$$

E.
$$f''(a) = 4f'(a) - 4f(a)$$

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Answers

Question 1

How to enter on CAS

- Menu
- Calculus
- Derivative at a point

In the 'Derivative at a point' submenu, you are able to select:

- What variable you are differentiating with respect to.
- What value you would like to substitute in.
- The order of the derivative you would like to take.

Alternatively, you can obtain the second derivative by pressing the template button

Question 2

1.1 2.1 3.1 ▶ *Document3	rad 🚺 🗙
$f(x):=\tan^{-1}(2\cdot x)$	Done
solve $\left(\frac{d^2}{dx^2}(f(x))=a \cdot x \cdot \left(\frac{d}{dx}(f(x))\right)^2, a\right)$	a=-4

Note: You can obtain the second derivative by pressing the template button

Note: The question asks for what values of m will the gradient of f will always be strictly decreasing.

For the gradient to be strictly decreasing we can solve $f''(x) \le 0$. It is always a good habit to sketch the graph to see how the graph behaves and to help interpret the output you obtain when solving.

Note: When sketching the derivative, you may be asked for a slider, in this case the values of m

Question 4 Answer A

For a function to be concave up we require f''(x) > 0

It is always a good habit to sketch the graph to see how the graph behaves and to help interpret the output you obtain when solving.

Question 5 Answer B

Question 6

Note: When the equation to the graph is not provided one strategy is to use a curve the looks and behaves like the one given in the question.

Note: To sketch the graph of y = f(x) given y = f'(x), on CAS you can sketch $y = \int f'(x) dx$, as shown below.y=f(x)

It may be helpful to sketch y = f'(x) and y = f(x) on the same set of axes to observe their features for the corresponding x values.

At x = 0, the graph of y = f(x) has a local maximum stationary point. At x = 3, the graph of y = f(x) has a stationary point of inflction.

a. To find the stationary points we need to solve f'(x) = 0. The stationary point is (1, 4)

Note: A nice way to obtain 'coordinates' is to simultaneously solve for x and to also solve for y = f(x), where f(x) is your defined function. The CAS will output the corresponding x and y values.

- ▲ solve $\begin{pmatrix} \frac{d^2}{dx^2}(f(x))=0, \{x,y\} \\ y=f(x) \\ x=-1.35721 \text{ and } y=-0.678604 \end{pmatrix}$
- b. To find the point of inflection we can solve f''(x) = 0. The point of inflection is (-1.35, -0.68)

Note: It is always a good habit to sketch the graph to see how the graph behaves and to help interpret the output you obtain when solving.

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

c. It is a good idea to change the widow settings on a graphs page to the given interval(s) in the question or the grid provided in the guestion.

Question 7

To find the point of inflection we can solve f''(x) = 0.

Note: It is always a good habit to sketch the graph to see how the graph behaves and to help interpret the output you obtain when solving.

Solving f''(x) = 0 is not always enough. From the output we obtain the points (-1,0)(-0.55, 0.53)(0.26, 0.60), and (1,0)

However looking at the graph, and using 'Analyze graph – Inflection', we see that only three of the four outputs are points of inflection. (1, 0) is a stationary point, not a point of inflection.

The point of inflections are (-1, 0), (-0.55, 0.53), and (0.26, 0.60).

Question 8 Answer E

7.1 7.2 8.1 ▶ *Document3 RAD X X	Once defining $g(x)$ we can evaluate $g''(a)$ by using the 'derivative at a point' via the calculus
Define $g(x) = e^{-2 \cdot x} \cdot f(x)$ Done	menu.
$\frac{d^2}{dx^2}(g(x)) _{x=a}$	- Menu - Calculus - Derivative at a point
$\frac{d^2}{dx}(f(x))\cdot e^{-2\cdot a} - 4\cdot \frac{d}{dx}(f(x))\cdot e^{-2\cdot a} + 4\cdot e^{-t}$	
$\frac{dx^2}{dx^2} \frac{dx}{dx}$ Define $y = \frac{d^2}{dx^2} (f(x))$ Done	The question asks for an expression for $f''(x)$. To make $f''(x)$ the subject, we can define y = f''(x), as shown to the right.
solve $\left(y \cdot \mathbf{e}^{-2 \cdot a} - 4 \cdot \frac{d}{dx} (f(x)) \cdot \mathbf{e}^{-2 \cdot a} + 4 \cdot \mathbf{e}^{-2 \cdot c} \right)$ $y = 4 \cdot \left(\frac{d}{dx} (f(x)) - f(a) \right)$	Note: One way to efficiently obtain prior work/output is to press up a and one the desired work is highlighted, press enter to bring it down to a new line.
	We are told $g''(a)$ is a point of inflection, so $g''(a) = 0$.
	Replacing $f''(x)$ with y in the equation $g''(a) = 0$ and solving for y we can make $f''(x)$ the subject.

