STUDENT REVISION SERIES

Vectors – Part 1

Each of the questions included here can be solved using the TI-Nspire.

Question: 1

Let $a = 3\hat{i} - 4\hat{j} + \hat{k}$ and $b = -\hat{i} + 2\hat{j} - 2\hat{k}$.

The magnitude of the vector $2\boldsymbol{a} - \boldsymbol{b}$ is

- (A) √165
- (B) \sqrt{129}
- (C) $\sqrt{141}$
- (D) \sqrt{149}
- (E) √61

Question: 2

The cosine of the angle between $\mathbf{a} = \hat{\mathbf{i}} - 2\hat{\mathbf{k}}$ and $\mathbf{b} = 2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, correct to two decimal places, is

- (A) -0.38
- (B) -0.30
- (C) 0.30
- (D) 0.38
- (E) 0.89

Question: 3

- Let $a = 2\hat{i} + 3\hat{j} + \hat{k}$ and $b = 3\hat{i} + 2\hat{j} + \hat{k}$.
- **a**×**b** is equal to
 - (A) $\hat{i} + 2\hat{j} + \hat{k}$
 - (B) $2\hat{i}+3\hat{j}+\hat{k}$
 - (C) $\hat{i} + \hat{j} 5\hat{k}$
 - (D) $2\hat{i} \hat{j} 5\hat{k}$
 - (E) 13

Question: 4

The line *I* is described by the vector equation:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \\ 11 \end{pmatrix} + t \begin{pmatrix} 4 \\ 12 \\ -4 \end{pmatrix}$$
.

Which one of the following points lies on line /?

- (A)(0,5,9)
- (B) (4,17,15)
- (C)(4,5,7)
- (D)(-4,-7,7)
- (E) (2,11,9)

Question: 5

Consider the points P(2,-1,3), Q(3,0,-2) and R(2,y,z) where y,z > 0.

- (a) Use a vector method to show that $\angle POQ = 90^{\circ}$.
- (b) Given that \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{OR} are mutually perpendicular, find the values of y and z.

Question: 6

Consider the points O(0,0,0), A(1,2,1) and B(4,2,-1). Let P be the point on \overrightarrow{OB} which is closest to A.

(a) Find the coordinates of *P*.

(b) Find the shortest distance between A and P. Give your answer correct to two decimal places.

Question: 7

Line I_1 has the vector equation $\mathbf{r}_1 = 2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 5\hat{\mathbf{k}} + t(\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}), t \in \mathbb{R}$ and line I_2 has the vector equation $\mathbf{r}_1 = 2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 7\hat{\mathbf{k}} + s(2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 3\hat{\mathbf{k}}), s \in \mathbb{R}$.

- (a) The lines l_1 and l_2 intersect at point *P*. Find the coordinates of *P*.
- (b) Find the angle between I_1 and I_2 . Give your answer correct to the nearest tenth of a degree.

Question: 8

The three planes x - 3y - 2z = -9, 2x - 5y + z = 3 and -3x + 6y + 2z = 8 intersect at the point *P*. Find the coordinates of *P*.

Answers

Question: 1

$$2\mathbf{a} - \mathbf{b} = 7\hat{\mathbf{i}} - 10\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$$
$$|2\mathbf{a} - \mathbf{b}| = \sqrt{165}$$

Answer: A

Question: 2

$$\cos\theta = \frac{\left(\hat{\boldsymbol{i}} - 2\hat{\boldsymbol{k}}\right) \cdot \left(2\hat{\boldsymbol{i}} - \hat{\boldsymbol{j}} + 2\hat{\boldsymbol{k}}\right)}{\left|\hat{\boldsymbol{i}} - 2\hat{\boldsymbol{k}}\right| \times \left|2\hat{\boldsymbol{i}} - \hat{\boldsymbol{j}} + 2\hat{\boldsymbol{k}}\right|} = -0.298...$$

Answer: B

Question: 3

Answer: C

Question: 4

When
$$t = \frac{1}{2}$$
, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \\ 11 \end{pmatrix} + \begin{pmatrix} 2 \\ 6 \\ -2 \end{pmatrix}$.

Answer: E

Question: 5

- (a) $\overrightarrow{OP} \cdot \overrightarrow{OQ} = 0 \Rightarrow \overrightarrow{OP} \perp \overrightarrow{OQ}$ since \overrightarrow{OP} , \overrightarrow{OQ} are non-zero and so $\angle POQ = 90^{\circ}$
- (b) $\overrightarrow{OP} \times \overrightarrow{OQ} = 2\hat{i} + 13\hat{j} + 3\hat{k}$ and so y = 13, z = 3 (y, z > 0)

Question: 6

(a)
$$\overrightarrow{AP} = -(\hat{i} + 2\hat{j} + \hat{k}) + t(4\hat{i} + 2\hat{j} - \hat{k})$$

Solving $\overrightarrow{AP} \cdot \overrightarrow{OB} = 0$ for t gives $t = \frac{1}{3}$.

Q is the point
$$\left(\frac{4}{3}, \frac{2}{3}, -\frac{1}{3}\right)$$
.
(b) When $t = \frac{1}{3}$, $\overrightarrow{AP} = \frac{1}{3}\hat{i} - \frac{4}{3}\hat{j} - \frac{4}{3}\hat{k}$ and so $\left|\overrightarrow{AP}\right| = 1.91$.

Question: 7

(a) Solving 2 correct equations 2+t=2+2s and -2-t=4+s for t and s gives t=-4 and s=-2. The third equation is 5+t=7+3s.

The coordinates of *P* are (-2,2,1).

(b)
$$\cos\theta = \frac{\left(\hat{\boldsymbol{i}} - \hat{\boldsymbol{j}} + \hat{\boldsymbol{k}}\right) \cdot \left(2\hat{\boldsymbol{i}} + \hat{\boldsymbol{j}} + 3\hat{\boldsymbol{k}}\right)}{\left|\hat{\boldsymbol{i}} - \hat{\boldsymbol{j}} + \hat{\boldsymbol{k}}\right| \left|2\hat{\boldsymbol{i}} + \hat{\boldsymbol{j}} + 3\hat{\boldsymbol{k}}\right|} = \frac{4}{\sqrt{42}}$$

 $\theta = 51.9^{\circ}$

Question: 8

The coordinates of *P* are (2,1,4).

