Vectors - Part 1

Each of the questions included here can be solved using the TI-Nspire.

Question: 1

Let $\boldsymbol{a}=3 \hat{\boldsymbol{i}}-4 \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$ and $\boldsymbol{b}=-\hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}-2 \hat{\boldsymbol{k}}$.
The magnitude of the vector $2 \boldsymbol{a}-\boldsymbol{b}$ is
(A) $\sqrt{165}$
(B) $\sqrt{129}$
(C) $\sqrt{141}$
(D) $\sqrt{149}$
(E) $\sqrt{61}$

Question: 2

The cosine of the angle between $\boldsymbol{a}=\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{k}}$ and $\boldsymbol{b}=2 \hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+2 \hat{\boldsymbol{k}}$, correct to two decimal places, is
(A) -0.38
(B) -0.30
(C) 0.30
(D) 0.38
(E) 0.89

Question: 3
Let $\boldsymbol{a}=2 \hat{\boldsymbol{i}}+3 \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$ and $\boldsymbol{b}=3 \hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$.
$\boldsymbol{a} \times \boldsymbol{b}$ is equal to
(A) $\hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$
(B) $2 \hat{\boldsymbol{i}}+3 \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$
(C) $\hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}-5 \hat{\boldsymbol{k}}$
(D) $2 \hat{\mathbf{i}}-\hat{\boldsymbol{j}}-5 \hat{\boldsymbol{k}}$
(E) 13

Question: 4

The line I is described by the vector equation: $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}0 \\ 5 \\ 11\end{array}\right)+t\left(\begin{array}{c}4 \\ 12 \\ -4\end{array}\right)$.
Which one of the following points lies on line I?
(A) $(0,5,9)$
(B) $(4,17,15)$
(C) $(4,5,7)$
(D) $(-4,-7,7)$
(E) $(2,11,9)$

Question: 5

Consider the points $P(2,-1,3), Q(3,0,-2)$ and $R(2, y, z)$ where $y, z>0$.
(a) Use a vector method to show that $\angle P O Q=90^{\circ}$.
(b) Given that $\overrightarrow{O P}, \overrightarrow{O Q}$ and $\overrightarrow{O R}$ are mutually perpendicular, find the values of y and z.

Question: 6
Consider the points $O(0,0,0), A(1,2,1)$ and $B(4,2,-1)$. Let P be the point on $\overrightarrow{O B}$ which is closest to A.
(a) Find the coordinates of P.
(b) Find the shortest distance between A and P. Give your answer correct to two decimal places.

Question: 7

Line I_{1} has the vector equation $\boldsymbol{r}_{1}=2 \hat{\boldsymbol{i}}-2 \hat{\boldsymbol{j}}+5 \hat{\boldsymbol{k}}+t(\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}), t \in R$ and line I_{2} has the vector equation $r_{1}=2 \hat{\boldsymbol{i}}+4 \hat{\boldsymbol{j}}+7 \hat{\boldsymbol{k}}+s(2 \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+3 \hat{\boldsymbol{k}}), s \in R$.
(a) The lines I_{1} and I_{2} intersect at point P. Find the coordinates of P.
(b) Find the angle between I_{1} and I_{2}. Give your answer correct to the nearest tenth of a degree.

Question: 8

The three planes $x-3 y-2 z=-9,2 x-5 y+z=3$ and $-3 x+6 y+2 z=8$ intersect at the point P.
Find the coordinates of P.

Answers

Question: 1

$$
\begin{aligned}
& 2 a-b=7 \hat{i}-10 \hat{j}+4 \hat{k} \\
& |2 a-b|=\sqrt{165}
\end{aligned}
$$

Answer: A

Question: 2

$\cos \theta=\frac{(\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{k}}) \cdot(2 \hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+2 \hat{\boldsymbol{k}})}{|\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{k}}| \times|2 \hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+2 \hat{\boldsymbol{k}}|}=-0.298 \ldots$
Answer: B
Question: 3
Answer: C
Question: 4
When $t=\frac{1}{2},\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}0 \\ 5 \\ 11\end{array}\right)+\left(\begin{array}{c}2 \\ 6 \\ -2\end{array}\right)$.
Answer: E

Question: 5

(a) $\overrightarrow{O P} \cdot \overrightarrow{O Q}=0 \Rightarrow \overrightarrow{O P} \perp \overrightarrow{O Q}$ since $\overrightarrow{O P}, \overrightarrow{O Q}$ are non-zero and so $\angle P O Q=90^{\circ}$
(b) $\overrightarrow{O P} \times \overrightarrow{O Q}=2 \hat{\boldsymbol{i}}+13 \hat{\boldsymbol{j}}+3 \hat{\boldsymbol{k}}$ and so $y=13, z=3(y, z>0)$

Question: 6

(a) $\overrightarrow{A P}=-(\hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}})+t(4 \hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}-\hat{\boldsymbol{k}})$

Solving $\overrightarrow{A P} \cdot \overrightarrow{O B}=0$ for t gives $t=\frac{1}{3}$.
Q is the point $\left(\frac{4}{3}, \frac{2}{3},-\frac{1}{3}\right)$.
(b) When $t=\frac{1}{3}, \overrightarrow{A P}=\frac{1}{3} \hat{\boldsymbol{i}}-\frac{4}{3} \hat{\boldsymbol{j}}-\frac{4}{3} \hat{\boldsymbol{k}}$ and so $|\overrightarrow{A P}|=1.91$.

Question: 7

(a) Solving 2 correct equations $2+t=2+2 s$ and $-2-t=4+s$ for t and s gives $t=-4$ and $s=-2$.

The third equation is $5+t=7+3 s$.
The coordinates of P are $(-2,2,1)$.
(b) $\cos \theta=\frac{(\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}) \cdot(2 \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+3 \hat{\boldsymbol{k}})}{|\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}||2 \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+3 \hat{\boldsymbol{k}}|}=\frac{4}{\sqrt{42}}$

$$
\theta=51.9^{\circ}
$$

Question: 8

The coordinates of P are $(2,1,4)$.

