STUDENT REVISION SERIES

Vectors (2)

Each of the questions included here can be solved using the TI-Nspire.

Scan the QR code or use the link:

Question: 1

A curve C has parametric equations $x = 4\cos\left(\frac{2\pi t}{3}\right)$ and $y = 4\sin\left(\frac{2\pi t}{3}\right)$ for $0 \le t \le 3$.

The Cartesian equation of C is

- (A) $x^2 y^2 = 16$
- (B) *x* + *y* = 16
- (C) x y = 4

(D)
$$x^2 + y^2 = 1$$

(E)
$$x^2 + y^2 = 16$$

Question: 2

The position vector of a particle at time t is given by $\mathbf{r}(t) = 4t\hat{\mathbf{i}} + (8t - t^2)\hat{\mathbf{j}}$, $0 \le t \le 3$.

The Cartesian equation of the particle's path is

(A)
$$y = 2x - \frac{x^2}{16}, x \ge 0$$

(B)
$$y = 2x - \frac{x^2}{16}, 0 \le x \le 12$$

(C)
$$y = 2x - \frac{x^2}{4}, 0 \le x \le 12$$

(D)
$$y = 2x - \frac{x^2}{16}, 0 \le x \le \frac{3}{4}$$

(E)
$$y = \frac{32}{x} - \frac{16}{x^2}, 0 < x \le 12$$

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author:

A particle moves so that its position vector at time *t* is $r(t) = 4\sin(2t)\hat{i} - 3\cos(2t)\hat{j}$, $t \ge 0$.

The initial velocity of the particle is

(A)	_3ĵ
(B)	-8î
(C)	8î
(D)	6 <i>ĵ</i>
(E)	-6 <i>ĵ</i>

Question: 4

The position vector of a projectile at time *t* seconds, relative to a point on level ground, is given by

 $r(t) = 10t\hat{i} + (19.6t - 4.9t^2)\hat{j}$ for $t \ge 0$ where \hat{i} is horizontal and \hat{j} is vertically upwards. Distances are measured in metres.

The maximum height reached by the projectile is

- (A) 4.9
- (B) 10
- (C) 19.6
- (D) 20
- (E) 40

Question: 5

The parametric equations of a curve *C* are $x = 2 \sec(t)$ and $y = 3 \tan(t)$, where $-\pi \le t \le \pi, t \ne \pm \frac{\pi}{2}$.

- (a) Find the Cartesian equation of *C*.
- (b) State the domain and range of *C*.
- (c) Sketch the graph of *C*.

Question: 6

The position vector of a particle at time t is given by $\mathbf{r}(t) = \cos^2(t)\hat{\mathbf{i}} + 4\sin^2(t)\hat{\mathbf{j}}$, $t \ge 0$.

- (a) Find the Cartesian equation of the path of the particle.
- (b) Sketch the path of the particle indicating any points of intersection with the coordinate axes.
- (c) State the position of the particle at t = 0.

Two particles, *A* and *B*, commence motion at time t = 0. At time *t* seconds, their respective position vectors, \mathbf{r}_A and \mathbf{r}_B , are given by $\mathbf{r}_A(t) = (6-t)\hat{\mathbf{i}} + 2t\hat{\mathbf{j}}$ and $\mathbf{r}_B(t) = (2t-5)\hat{\mathbf{i}} + 2t\hat{\mathbf{j}}$, $t \ge 0$.

- (a) Show that A and B collide and find the time of collision.
- (b) Find the coordinates of the point of collision.

Question: 8

The position vector of a particle at time t seconds is given by $\mathbf{r}(t) = (t - 2e^t)\hat{\mathbf{i}} + (3\cos(t) - 2t)\hat{\mathbf{j}}$, $0 \le t \le \pi$.

All distances are measured in metres.

- (a) Find the particle's initial velocity.
- (b) Find the particle's speed at $t = \frac{\pi}{2}$. Give your answer correct to two decimal places.
- (c) Find the magnitude of the particle's acceleration at $t = \frac{\pi}{2}$. Give your answer correct to two decimal places.

Answers

Question: 1

Squaring each equation and adding gives $x^2 + y^2 = 16$.

Answer: E

Question: 2

Substituting $t = \frac{x}{4}$ into $y = 8t - t^2$ gives $y = 2x - \frac{x^2}{16}$.

$$0 \le \frac{x}{4} \le 3$$
 and so $0 \le x \le 12$

Answer: B

Question: 3

$$\mathbf{r}'(t) = 8\cos(2t)\hat{\mathbf{i}} + 6\sin(2t)\hat{\mathbf{j}}$$
 and $\mathbf{r}'(0) = 8\hat{\mathbf{i}}$

Answer: C

Question: 4

The maximum height occurs when the \hat{j} component of r'(t) is zero.

Solving 19.6 - 9.8t = 0 for t gives t = 2.

 $r(2) = 20\hat{i} + 19.6\hat{j}$ so the maximum height is 19.6 metres.

Answer: C

(a) Use of
$$1 + \tan^2(t) = \sec^2(t)$$
 gives $\frac{x^2}{4} - \frac{y^2}{9} = 1$

(b) The domain of C is the range of $x = 2 \sec(t)$ which is $(-\infty, -2] \cup [2, \infty)$. The range of C is the range of $y = 3\tan(t)$ which is R.

(c) The graph is a hyperbola centred at the origin. The asymptotes have equations $y = \pm \frac{3x}{2}$.

Question: 6

- (a) y = 4 4x for $0 \le x \le 1$
- (b) The path is a straight line joining (0,4) and (1,0)

(c)
$$(1,0)$$
 at $t = 0$

(a)
$$\mathbf{r}_{A}(t) = \mathbf{r}_{B}(t)$$
 occurs at $t = \frac{11}{3}$
(b) point of collision is $\left(\frac{7}{3}, \frac{22}{3}\right)$

Question: 8

(a)
$$\mathbf{r}'(t) = (1 - 2e^t)\hat{\mathbf{i}} - (3\sin(t) + 2)\hat{\mathbf{j}} \text{ and } \mathbf{r}'(0) = -\hat{\mathbf{i}} - 2\hat{\mathbf{j}}$$

(b)
$$r'\left(\frac{\pi}{2}\right) = \left(1 - 2e^{\frac{\pi}{2}}\right)\hat{i} - 5\hat{j} \text{ and } \left|r'\left(\frac{\pi}{2}\right)\right| = 9.97 \text{ (m/s)}$$

(c)
$$r''\left(\frac{\pi}{2}\right) = -2e^{\frac{\pi}{2}}\hat{i}$$
 and $\left|r''\left(\frac{\pi}{2}\right)\right| = 9.62$ (m/s²)

