STUDENT REVISION SERIES

Reciprocal and Inverse Trigonometric Functions

Question: 1.

The maximal domain of the function $f(x)=3 \cos ^{-1}\left(\frac{2 x-1}{4}\right)+\pi$ is:
A. $\left[-\frac{5}{2}, \frac{3}{2}\right]$
B. $\left[-\frac{3}{2}, \frac{5}{2}\right]$
C. $[\pi, 4 \pi]$
D. $\left[-\frac{5}{2}, \frac{11}{2}\right]$
E. $[-1,1]$

Question: 2.

The maximal domain and range of the function $f(x)=4 \sin ^{-1}(3 x+1)+\frac{\pi}{2}$ are respectively:
A. $\left[\frac{-3 \pi}{2}, \frac{5 \pi}{2}\right]$ and $\left[0, \frac{2}{3}\right]$
B. $\left[\frac{-3 \pi}{2}, \frac{5 \pi}{2}\right]$ and $\left[-\frac{2}{3}, 0\right]$
C. $\left[-\frac{2}{3}, 0\right]$ and $\left[\frac{\pi-8}{2}, \frac{\pi+8}{2}\right]$
D. $\left[0, \frac{2}{3}\right]$ and $\left[\frac{-3 \pi}{2}, \frac{5 \pi}{2}\right]$
E. $\quad\left[-\frac{2}{3}, 0\right]$ and $\left[\frac{-3 \pi}{2}, \frac{5 \pi}{2}\right]$

Question: 3

Find the sum of the solutions to $\sin ^{2}(2 x)=\frac{1}{4}$ given $0 \leq x \leq \pi$.

Question: 4.

The asymptotes of $y=\frac{1}{3} \tan ^{-1}(3 x)$ are given by:
A. $y= \pm \frac{\pi}{2}$
B. $x= \pm \frac{\pi}{2}$
C. $y= \pm \frac{\pi}{6}$
D. $x= \pm \frac{\pi}{6}$
E. $y= \pm \frac{3 \pi}{2}$

Question: 5.
Consider the function $f(x)=a \sin ^{-1}(x+b)$. Given that f has domain $[-3,-1]$ and range $[-\pi, \pi]$, it follows that:
A. $\quad a=2, b=-2$
B. $\quad a=2, b=2$
C. $\quad a=-2, b=2$
D. $a=-2, b=-2$
E. $\quad a=\pi, b=-\pi$

Question: 6.

Consider the function with rule $f(x)=3 \arccos (\sqrt{1-x})$. Sketch the graph of f over its maximal domain. Label the endpoints with their coordinates.

Question: 7.

Find the coordinates of the points of intersection of the graph with the equation $y=\operatorname{cosec}^{2}\left(\frac{\pi x}{8}\right)$ and the line $y=\frac{4}{3}$ for $0<x<8$.

Question: 8.

The implied domain of the function with rule $f(x)=1+b \arcsin (a x)$ where $a>0$ is:
A. $(-\infty, \infty)$
B. $\left[\frac{1}{a},-\frac{1}{a}\right]$
C. $\left[-\frac{1}{a}, \frac{1}{a}\right]$
D. $[1-b, 1+b]$
E. $[-1,1]$

Answers

Question 1 Answer B

	rad $] \times$
domain $\left(3 \cdot \cos ^{\prime}\left(\frac{2 \cdot x-1}{4}\right)+\pi, x\right)$	$\frac{-3}{2} \leq x \leq \frac{5}{2}$
।	

Question 2 Answer E

Note: When performing two or more operations with a function it is more efficient to define the function and then performing the required operations

Question 3 The sum of all the solutions is 2π

	To find the solutions we can use either the 'solve' command or the 'zeros' command. An equation $f(x)=g(x)$ can be written as $f(x)-g(x)=0$. To use 'zeros' type in zeros $(f(x)-g(x), x)$. It will return a list of the solutions to $f(x)=g(x)$. 'zeros' can also be obtained from the menu: - Menu - Algebra - Zeros Once you obtain your list, you can type sum at the beginning to sum all of the elements in the list.
$\begin{aligned} & \left.\operatorname{zeros}\left((\sin (2 \cdot x))^{2}-\frac{1}{4}, x\right) \right\rvert\, 0 \leq x \leq \pi \\ &\left\{\frac{\pi}{12}, \frac{5 \cdot \pi}{12}, \frac{7 \cdot \pi}{12}, \frac{11 \cdot \pi}{12}\right\} \end{aligned}$	
$\underbrace{\operatorname{sum}\left(\left.\operatorname{zeros}\left((\sin (2 \cdot x))^{2}-\frac{1}{4}, x\right) \right\rvert\, 0 \leq x \leq \pi\right)} 2$	

Question $4 \quad$ Answer C

Note: The asymptotes are horizontal, so they must be of the form $y=a$, where a is a real number.

It can be seen graphically that the asymptotes occur at $y= \pm \frac{\pi}{6}$ as the arctan graph approaches the line $y=\frac{\pi}{6}$.

Alternatively, you can use the limit template to obtain the asymptote.

Method 1: Trial and Error

$4.1 \quad 4.2 \quad 5.1$	
$A(x):=a \cdot \sin ^{-1}(x+b)$	RAS Trig ..ork
domain $(f(x), x) \mid a=2$ and $b=-2$	$1 \leq x \leq 3$
domain $(f(x), x) \mid a=2$ and $b=2$	$-3 \leq x \leq-1$
$A(-3) \mid a=2$ and $b=2$	$-\pi$
1	

Method 2: Horizontal shift, then dilation

Values for a and b can be substituted by using the 'given' or 'such that' command, |

Once the correct domain is identified, the range can be determined by substituting in the endpoints.

Note: By sketching $f 1(x)=\sin ^{-1}(x)$, you can apply transformations to $y=f 1(x)$ to manipulate the endpoints to fit the required domain and range.

Method 3: Dilation, then horizontal shift

Question $7 \quad\left(\frac{8}{3}, \frac{4}{3}\right)$ and $\left(\frac{16}{3}, \frac{4}{3}\right)$

5.15 .26 .1
Define $f(x)=\left(\csc \left(\frac{\pi \cdot x}{8}\right)\right)^{2}$
solve $\left.\left(f(x)=\frac{4}{3}\right.$ and $\left.y=f(x), x\right) \right\rvert\, 0<x<8$
$x=\frac{8}{3}$ and $y=\frac{4}{3}$ or $x=\frac{16}{3}$ and $y=\frac{4}{3}$
(1) Done

Note: When defining $\operatorname{cosec}^{2}\left(\frac{\pi x}{8}\right)$ on CAS, you must type it in as $\left(\operatorname{cosec}\left(\frac{\pi x}{8}\right)\right)^{2}$. This is the same for any trigonometric function.

Note: When solving trigonometric function, do not forget to put a domain restriction after the solve command, otherwise you will obtain general solutions.

Note: A nice way to obtain 'coordinates' is to simultaneously solve for x and to also solve for $y=f(x)$, where $f(x)$ is your defined function. The CAS will output the corresponding x and y values.

Question 8 Answer C

	Note: The CAS Calculator can work with literal
$\begin{aligned} \operatorname{domain}\left(1+b \cdot \sin ^{-1}(a \cdot x), x\right) \mid a>0 & \\ & \frac{-1}{a} \leq x \leq \frac{1}{a} \text { and } a>0 \end{aligned}$	specify which is the required variable in the
	equation or expression.

