STUDENT REVISION SERIES

Reciprocal and Inverse Trigonometric Functions

Question: 1.

The maximal domain of the function $f(x) = 3\cos^{-1}\left(\frac{2x-1}{4}\right) + \pi$ is:

A. $\left[-\frac{5}{2}, \frac{3}{2}\right]$ B. $\left[-\frac{3}{2}, \frac{5}{2}\right]$ C. $[\pi, 4\pi]$ D. $\left[-\frac{5}{2}, \frac{11}{2}\right]$ E. [-1, 1]

Question: 2.

The maximal domain and range of the function $f(x) = 4 \sin^{-1}(3x + 1) + \frac{\pi}{2}$ are respectively:

- A. $\left[\frac{-3\pi}{2}, \frac{5\pi}{2}\right]$ and $\left[0, \frac{2}{3}\right]$
- B. $\left[\frac{-3\pi}{2}, \frac{5\pi}{2}\right]$ and $\left[-\frac{2}{3}, 0\right]$
- C. $\left[-\frac{2}{3}, 0\right]$ and $\left[\frac{\pi-8}{2}, \frac{\pi+8}{2}\right]$
- D. $\left[0, \frac{2}{3}\right]$ and $\left[\frac{-3\pi}{2}, \frac{5\pi}{2}\right]$
- E. $\left[-\frac{2}{3}, 0\right]$ and $\left[\frac{-3\pi}{2}, \frac{5\pi}{2}\right]$

Question: 3.

Find the sum of the solutions to $\sin^2(2x) = \frac{1}{4}$ given $0 \le x \le \pi$.

Question: 4.

The asymptotes of $y = \frac{1}{3} \tan^{-1}(3x)$ are given by:

A.
$$y = \pm \frac{\pi}{2}$$
 B. $x = \pm \frac{\pi}{2}$ C. $y = \pm \frac{\pi}{6}$ D. $x = \pm \frac{\pi}{6}$ E. $y = \pm \frac{3\pi}{2}$

Question: 5.

Consider the function $f(x) = a \sin^{-1}(x + b)$. Given that f has domain [-3, -1] and range $[-\pi, \pi]$, it follows that:

- A. a = 2, b = -2
- B. a = 2, b = 2
- C. a = -2, b = 2
- D. a = -2, b = -2
- E. $a = \pi$, $b = -\pi$

Question: 6.

Consider the function with rule $f(x) = 3 \arccos(\sqrt{1-x})$. Sketch the graph of f over its maximal domain. Label the endpoints with their coordinates.

Question: 7.

Find the coordinates of the points of intersection of the graph with the equation $y = \csc^2\left(\frac{\pi x}{8}\right)$ and the line $y = \frac{4}{3}$ for 0 < x < 8.

Question: 8. The implied domain of the function with rule $f(x) = 1 + b \arcsin(ax)$ where a > 0 is:

- A. $(-\infty, \infty)$
- B. $\left[\frac{1}{a}, -\frac{1}{a}\right]$
- C. $\left[-\frac{1}{a},\frac{1}{a}\right]$
- D. [1-b, 1+b]
- E. [-1, 1]

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Answers

Question 2 Answer E

1.1 2.1 2.2 ▶ *Doc	rad 📘 🗙
Define $f(x) = 4 \cdot \sin^{-1}(3 \cdot x + 1) + \frac{\pi}{2}$	Done 🔺
domain($f(x), x$)	$\frac{-2}{3} \le x \le 0$
$\left(\frac{-2}{3}\right)$	$\frac{-3 \cdot \pi}{2}$
A(0)	<u>5·π</u> 2 •

Note: When performing two or more operations with a function it is more efficient to define the function and then performing the required operations

Question 3 The sum of all the solutions is 2π

Question 4 Answer C

Note: The asymptotes are horizontal, so they must be of the form y = a, where a is a real number.

It can be seen graphically that the asymptotes occur at $y = \pm \frac{\pi}{6}$ as the arctan graph approaches the line $y = \frac{\pi}{6}$.

Alternatively, you can use the limit template to obtain the asymptote.

Question 5 Answer B

Method 1: Trial and Error

4.1 4.2 5.1 ▶*CAS Trig ork	RAD 📘	×
$f(x):=a\cdot\sin^{-1}(x+b)$	Done	
$\operatorname{domain}(f(x), x) a=2 \text{ and } b=-2$	1≤x≤3	
$\operatorname{domain}(f(x), x) a=2 \text{ and } b=2$	-3≤x≤-1	
f(-3) a=2 and b=2	-π	
1		

Values for a and b can be substituted by using the 'given' or 'such that' command, |

Once the correct domain is identified, the range can be determined by substituting in the endpoints.

Method 2: Horizontal shift, then dilation

Note: By sketching $f1(x) = sin^{-1}(x)$, you cal	n
apply transformations to $y = f 1(x)$ to	
manipulate the endpoints to fit the required	
domain and range.	

Method 3: Dilation, then horizontal shift

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question 7

$\left(\frac{8}{3},\frac{4}{3}\right)$ and $\left(\frac{16}{3},\frac{4}{3}\right)$

Note: When defining $cosec^2\left(\frac{\pi x}{8}\right)$ on CAS, you must type it in as $\left(cosec\left(\frac{\pi x}{8}\right)\right)^2$. This is the same for any trigonometric function.

Note: When solving trigonometric function, do not forget to put a domain restriction after the solve command, otherwise you will obtain general solutions.

Note: A nice way to obtain 'coordinates' is to simultaneously solve for x and to also solve for y = f(x), where f(x) is your defined function. The CAS will output the corresponding x and y values.

Question 8 Answer C

$ \begin{array}{ c c c c c } \hline \hline & & & & \\ \hline & & & \\ \hline \\ \hline$	Note: The CAS Calculator can work with literal equations and expressions. It is important to specify which is the required variable in the equation or expression.
---	---

 $^{\odot}$ Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: J Mott

TEXAS INSTRUMENTS