STUDENT REVISION SERIES

Graph Sketching Part 1

Question: 1.
Given that $f(x)=\left\{\begin{array}{ll}\left|x^{2}-1\right|, & x \geq 0 \\ 1-x^{3}, & x<0\end{array}\right.$, it follows that $f^{\prime}\left(\frac{1}{2}\right)$ equals:
A. 0
B. 1
C. -1
D. $-\frac{3}{4}$
E. $\frac{3}{4}$

Question: 2.
Consider $h(x)=\arccos (|x|)$.
The number of solutions to the equation $h(x)=a, 0 \leq a<\frac{\pi}{2}$, is
A. 4
B. 1
C. 0
D. 2
E. 3

Question: 3.

Which of the following statements is false, given that $f(x)=\log _{e}\left(\left|x+\sqrt{x^{2}-4}\right|\right)$?
A. $f(-2)=f(2)$
B. $f^{\prime}(x)$ is undefined for $-2<x<2$
C. $f(x)$ is concave up for $x<2$
D. $f^{\prime}(4)=\frac{\sqrt{3}}{6}$
E. $f(-3)=f(3)$

Question: 4.

Let
$g(x)=\left\{\begin{array}{ll}\arcsin (x) & -1 \leq x<\frac{1}{\sqrt{2}} \\ a x^{2}+b x, & x \geq \frac{1}{\sqrt{2}}\end{array}\right\}$
a) Find the values of a and b so that g is continuous and differentiable over its domain.
b) Sketch the graphs of $g(x)$ and $g^{\prime}(x)$ using the obtained values of a and b.

Question: 5.

Consider the pair of graphs $y=|x|$ and $y=-|x|+b$, where $b \in \mathbb{R}^{+}$.
If the graphs enclose an area of 20 square units, find the value of b.

Question: 6.

For any function, $g(x)$, continuous and differentiable over its domain, the following is always true:
A. $g(|x|) \geq 0$
B. the graphs of $|g(x)|$ and $g(|x|)$ are symmetrical about the y-axis
C. $|g(x)|$ is a continuous function
D. $g(|x|)$ is an even function
E. $|g(x)|$ is an odd function

Question: 7.

The functions f and g are defined as

$$
\begin{aligned}
& f(x)=2|x|+3 \\
& g(x)=3-4 x
\end{aligned}
$$

Solve $f(g(x))>f(x)$.

Question: 8.

The equation of the following function is $y=|a x+b|, a<0$.

The value of b is:
A. -3
B. -1
C. 1
D. 3
E. $-\frac{1}{3}$

Question: 9.

Let $f(x)=|x|$. The graph of f is transformed by:

- a dilation by a factor of 3 from the x-axis, followed by
- a translation of 1 unit horizontally to the right, followed by
- a dilation by a factor of $\frac{1}{2}$ from the y-axis.

The rule of the transformed graph is
A. $h(x)=2|3 x+1|$
B. $h(x)=3|2 x-1|$
C. $h(x)=3|2(x-1)|$
D. $h(x)=2\left|\frac{x}{3}-1\right|$
E. $\quad h(x)=3\left|\frac{x-1}{2}\right|$

Answers

Question 1

Answer: C

Question 2 Answer: D

There will be two solutions as can be seen from the graph below:

The horizontal line $y=a, 0 \leq a<\frac{\pi}{2}$, will cut twice the given graph.

Question 3 Answer: E

Draw $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$ on one set of
axes:

From the diagram B and C are correct.

Check the values

$1.2 \quad 2.1$	2.2	*Doc
$f 1(-2)$	$\ln (2)$	
$f 1(2)$	$\ln (2)$	
$f 1(-3)$	$\ln (-(\sqrt{5}-3))$	
$f 1(3)$	$\ln (\sqrt{5}+3)$	
$\left.\Delta \frac{d}{d x}(f 1(x)) \right\rvert\, x=4$	$\frac{\sqrt{3}}{6}$	

A and D are correct
Option E is incorrect

Question 4

a) $a=1, b=\frac{\pi-2}{4}$

b)

Question 5

$b=2 \sqrt{10}$

It can be seen that the shape is a square with diagonal length equal to b

Square side has length a such that:

$3.13 .24 .1 \mid$ *graphs 1 ...out	RAD $] \times$
solve $\left.\left(\frac{b^{2}}{2}=20, b\right) \right\rvert\, b>0$	$b=2 \cdot \sqrt{10}$

$$
\begin{aligned}
& a^{2}+a^{2}=b^{2} \\
& 2 a^{2}=b^{2} \\
& a^{2}=\frac{b^{2}}{2}
\end{aligned}
$$

Question 6 Answer: D

$g(|x|)$ is always an even function, as $g(-x)=g(x)$ and the graph is symmetrical about the y-axis.

Question 7

$x<\frac{3}{5}$ or $x>1$.
Define and solve

Graphically

Question $8 \quad$ Answer: B

Using sliders

Question $9 \quad$ Answer: B

Define $f(x)=\|x\|$	Done
$3 \cdot f(x-1)$	$3 \cdot\|x-1\|$
$g(x):=3 \cdot\|x-1\|$	Done
$g(2 \cdot x)$	$3 \cdot\|2 \cdot x-1\|$

Alternatively draw it:

Follow the order of transformations

Find the rule for the final graph

