STUDENT REVISION SERIES

Graph Sketching Part 1

Question: 1.

Given that $f(x) =$	$= \begin{cases} x^2 - 1 , & x \ge \\ 1 - x^3, & x < \end{cases}$	0 , it follows that $ 0$	$f'\left(\frac{1}{2}\right)$ equals:	
A. 0	B. 1	C. –1	D. $-\frac{3}{4}$	E. $\frac{3}{4}$

Question: 2.

Consider $h(x) = \arccos(|x|)$.

The number of solutions to the equation h(x) = a, $0 \le a < \frac{\pi}{2}$, is

A. 4 B. 1 C. 0 D. 2 E. 3

Question: 3.

Which of the following statements is false, given that $f(x) = \log_e \left(\left| x + \sqrt{x^2 - 4} \right| \right)$?

- A. f(-2) = f(2)
- B. f'(x) is undefined for -2 < x < 2
- C. f(x) is concave up for x < 2

D.
$$f'(4) = \frac{\sqrt{3}}{6}$$

E. $f(-3) = f(3)$

Question: 4.

Let

$$g(x) = \begin{cases} \arcsin(x) & -1 \le x < \frac{1}{\sqrt{2}} \\ ax^2 + bx, \ x \ge \frac{1}{\sqrt{2}} \end{cases}$$

- a) Find the values of a and b so that g is continuous and differentiable over its domain.
- b) Sketch the graphs of g(x) and g'(x) using the obtained values of a and b.

Question: 5.

Consider the pair of graphs y = |x| and y = -|x| + b, where $b \in \mathbb{R}^+$. If the graphs enclose an area of 20 square units, find the value of *b*.

Question: 6.

For any function, g(x), continuous and differentiable over its domain, the following is always true:

- A. $g(|x|) \ge 0$
- B. the graphs of |g(x)| and g(|x|) are symmetrical about the y-axis
- C. |g(x)|' is a continuous function
- D. g(|x|) is an even function
- E. |g(x)| is an odd function

Question: 7.

The functions f and g are defined as

$$f(x) = 2|x|+3$$
$$g(x) = 3-4x$$

Solve f(g(x)) > f(x).

Question: 8.

The equation of the following function is y = |ax + b|, a < 0.

The value of *b* is:

E.
$$-\frac{1}{3}$$

Question: 9.

Let f(x) = |x|. The graph of f is transformed by:

- a dilation by a factor of 3 from the *x*-axis, followed by
- a translation of 1 unit horizontally to the right, followed by
- a dilation by a factor of $\frac{1}{2}$ from the *y*-axis.

The rule of the transformed graph is

A.
$$h(x) = 2|3x+1|$$

B. $h(x) = 3|2x-1|$
C. $h(x) = 3|2(x-1)|$
D. $h(x) = 2\left|\frac{x}{3}-1\right|$
E. $h(x) = 3\left|\frac{x-1}{2}\right|$

Answers

Question 2 Answer: D

There will be two solutions as can be seen from the graph below:

The horizontal line y = a, $0 \le a < \frac{\pi}{2}$, will cut twice the given graph.

Question 3 Answer: E

Draw f(x), f'(x) and f''(x) on one set of axes:

From the diagram B and C are correct.

Question 4

a)
$$a = 1, b = \frac{\pi - 2}{4}$$

Check the values

A and D are correct Option E is incorrect

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: B Graham

b)

Question 5

 $b = 2\sqrt{10}$

3.1 3.2 4.1 ▶*graphs 1 out	RAD 📘 🗙
solve $\left(\frac{b^2}{2}=20,b\right) b>0$	b=2·√10

It can be seen that the shape is a square with diagonal length equal to b

Square side has length *a* such that:

$$a2 + a2 = b2$$
$$2a2 = b2$$
$$a2 = \frac{b2}{2}$$

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: B Graham

Question 6 Answer: D

g(|x|) is always an even function, as g(-x) = g(x) and the graph is symmetrical about the y-axis.

Question 7

$$x < \frac{3}{5} or x > 1.$$

Define and solve

Question 8 Answer: B

Using sliders

Question 9 Answer: B

Alternatively draw it:

Find the rule for the final graph

2.5	3.1	3.2	*Graphs	\$ RAD 📘	\times
f3(x)				$3 \cdot 2 \cdot x - 1 $	
					-

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.