STUDENT REVISION SERIES

Calculus 2

Question: 1.

Find the gradient at $x=2$ on the curve $x^{3}+y^{3}=9$.

Question: 2.
Find the equation of the tangent to the curve $3 x^{2}-2 x^{2} y+4 y^{2}=1$ at the point $(3,1)$

Question: 3.

Find the coordinates of the points on the curve $x^{2}-3 x y+3 y^{2}=9$ at which the tangent is parallel to the x axis

Question: 4.

For the curve defined by the parametric equations
$x=t-t^{2}$
$y=t-t^{3}$
Find $\frac{d y}{d x}$ at $t=2$

Question: 5.

For the curve defined by the parametric equations
$x=t-\sin (t)$
$y=1-\cos (t)$
Find $\frac{d y}{d x}$ at $y=\frac{1}{2}$

Question: 6.

For the curve defined by the parametric equations
$x=t^{3}-2 t+2$
$y=e^{2 t}$ for $0 \leq t \leq \frac{3}{2}$
Find the coordinates of the point where $\frac{d y}{d x}$ is undefined.

Question: 7.

An ascending hot air balloon rises vertically. As it rises the balloon is observed by a child at ground level 600 meters away. When the angle of elevation of the balloon is $\frac{\pi}{3}$ radians from the horizontal direction, and is increasing at a rate of 0.01 radians per second. Find the speed of the balloon. Give your answer as an exact value.

Question: 8.

A pancake is in the shape of a circle cooking in a frying pan. Its surface area is increasing at a rate of $0.001 \mathrm{~m}^{2} / \mathrm{s}$. Let r meters be the radius the pancake at time t seconds. Find $\frac{d r}{d t}$ in terms of r.

Question: 9

A conical tank of radius of 1 meter and height of 2 meters is filling with water at a constant rate of $1.5 \mathrm{~m}^{3} / \mathrm{min}$. At what rate is the water rising when the depth is 0.75 meters?

Answers

Question $1 \quad$ Gradient is -4

1.1	$\frac{-x^{2}}{y^{2}}$
$\operatorname{impDif}\left(x^{3}+y^{3}=9, x, y\right)$	RAD $\square \times 1$
$\operatorname{solve}\left(x^{3}+y^{3}=9, y\right) \mid x=2$	-4
$\left.\frac{-x^{2}}{y^{2}} \right\rvert\, x=2$ and $y=1$	

To perform implicit differentiation on CAS use the command 'impdif', which can be accessed from the menu:

- Menu
- Calculus
- Implicit Differentiation

To find the y value we need to substitute in $x=2$ and solve for y. See $2^{\text {nd }}$ line.

Once we have our x and y values, we can substitute them in using the 'given/such that' symbol |.

Question $2 \quad y=\frac{3 x}{5}-\frac{4}{5}$

To find the equation of a straight line we can use the formula $y-y_{1}=m\left(x-x_{1}\right)$, where m is the gradient, and $\left(x_{1}, y_{1}\right)$ is a point on the graph.

By finding and defining the gradient, we can substitute in the gradient and given point into the above formula and solve for y to make y the subject. See 3rd line.

Question $3 \quad(-3 \sqrt{3},-2 \sqrt{3}) \&(3 \sqrt{3}, 2 \sqrt{3})$

$$
\operatorname{impDif}\left(x^{2}-3 \cdot x \cdot y+3 \cdot y^{2}=9, x, y\right) \quad \frac{2 \cdot x-3 \cdot y}{3 \cdot(x-2 \cdot y)}
$$

$$
\text { solve }\left(\begin{array}{l}
\frac{2 \cdot x-3 \cdot y}{3 \cdot(x-2 \cdot y)}=0 \\
x^{2}-3 \cdot x \cdot y+3 \cdot y^{2}=9
\end{array},\{x, y\}\right)
$$

$$
x=-3 \cdot \sqrt{3} \text { and } y=-2 \cdot \sqrt{3} \text { or } x=3 \cdot \sqrt{3} \text { and } y=2 \cdot \sqrt{3}
$$

Question $4 \quad \frac{d y}{d x}$ at $t=2$ is $\frac{11}{3}$

2.1 3.1 4.1	FDoc
$x:=t-t^{2}$	$t-t^{2}$
$y:=t-t^{3}$	$t-t^{3}$
$\frac{d}{d t}(y) \cdot \frac{1}{\frac{d}{d t}(x)}$	$\frac{3 \cdot t^{2}-1}{2 \cdot t-1}$
$\left.\frac{3 \cdot t^{2}-1}{2 \cdot t-1} \right\rvert\, t=2$	$\frac{11}{3}$

Question $5 \quad \frac{d y}{d x}$ at $y=\frac{1}{2}$ is $\sqrt{3}$

$|$| $x=t-\sin (t)$ | $t-\sin (t)$ |
| :--- | ---: |
| $y==1-\cos (t)$ | $1-\cos (t)$ |
| $\frac{d y}{d x}=\frac{d}{d t}(y) \cdot \frac{1}{\frac{d}{d t}(x)}$ | $\frac{d y}{d x}=\frac{1}{\tan \left(\frac{t}{2}\right)}$ |

solve $\left(y=\frac{1}{2}, t\right) \left\lvert\, 0<t<\frac{\pi}{2} \quad t=\frac{\pi}{3}\right.$
$\left.\frac{d y}{d x}=\frac{1}{\tan \left(\frac{t}{2}\right)} \right\rvert\, t=\frac{\pi}{3} \quad \frac{d y}{d x}=\sqrt{3}$

Question $6 \quad\left(2-\frac{4 \sqrt{6}}{9}, e^{\frac{2 \sqrt{6}}{9}}\right)$

$x=t^{3}-2 \cdot t+2$	$t^{3}-2 \cdot t+2$
$y:=\mathbf{e}^{2 \cdot t}$	$e^{2 \cdot t}$
$\triangle \frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}$	true
$\frac{d y}{d x}=\frac{d}{d t}(y) \cdot \frac{1}{\frac{d}{d t}(x)} \quad \frac{d y}{d x}$	$\frac{d y}{d x}=\frac{2 \cdot \mathbf{e}^{2 \cdot t}}{3 \cdot t^{2}-2}$
solve $\left(3 \cdot t^{2}-2=0, t\right) \left\lvert\, 0 \leq t \leq \frac{3}{2}\right.$	$\frac{3}{2} \quad t=\frac{\sqrt{6}}{3}$
$x \left\lvert\, t=\frac{\sqrt{6}}{3}\right.$	$2-\frac{4 \cdot \sqrt{6}}{9}$
$y=\frac{\sqrt{6}}{3}$	$2 \cdot \sqrt{6}$
3	

To determine where the derivative is undefined, we require the denominator in the derivative to be zero.

Note: When solving do not forget any domain restrictions.

Question $7 \quad \frac{d x}{d t}$ at $\theta=\frac{\pi}{3}$ is $24 \mathrm{~m} / \mathrm{s}$

$$
\begin{array}{ll}
\triangle \frac{d x}{d t}=\frac{d x}{d \theta} \cdot \frac{d \theta}{d t} & \text { true } \\
x=600 \cdot \tan (\theta) & 600 \cdot \tan (\theta) \\
\begin{array}{ll}
\frac{d x}{d t}=\frac{d}{d \theta}(x) \cdot 0.01 & \\
\frac{d x}{d t}=\frac{6 .}{(\cos (\theta))^{2}}-\theta-\frac{\pi}{3} & \frac{d x}{d t}=24 .
\end{array} \\
\frac{\cos (\theta))^{2}}{2}
\end{array}
$$

Question $8 \quad \frac{d r}{d t}=\frac{1}{2000 \pi r} \mathrm{~m} / \mathrm{s}$

Note: It is a good idea to convert decimals into fractions when entering them into CAS. If you're not sure how to convert the decimal, use the 'exact' command.
exact(0.001)

$$
\frac{1}{1000}
$$

Note: Since the volume has two variables, r and h, we need to find a relationship between r and h. Similarity is a common strategy for geometric problems.

