## Creating User Defined Functions for Further Mathematics Modules

Author: Craig Browne
Each of the questions included here can be solved using either the TI-Nspire CX or CX CAS.

## Question 1

Calculate the height of the cone shown below, rounded to two decimal places:


Response:
$\qquad$
$\qquad$
$\qquad$

## Question 2

Calculate the height the ladder reaches up the wall in the diagram below, writing your answer to two decimal places:


Response:
$\qquad$
$\qquad$
$\qquad$
Question 3
Calculate the length of $A B$ for the triangle shown below to 2 decimal places. Lengths are measured in cm :


Response:
$\qquad$
$\qquad$
$\qquad$

## Question 4

Calculate the area of the sector as shown in the diagram below to 3 significant figures:


Response:
$\qquad$
$\qquad$
$\qquad$

## Question 5

Wellington is located at ( $41 \mathrm{~S}, 175 \mathrm{E}$ ) as shown in the diagram below:


Calculate the distance to the equator to the nearest km if the radius of the earth is 6400 km .

Response:
$\qquad$
$\qquad$
$\qquad$

## Now your try!!

## Question 1

A window in the wall of a house has the following dimensions:

0.8 m

Calculate the value of the angle to the nearest degree.
Response:
$\qquad$
$\qquad$
$\qquad$

## Question 2

Calculate the diagonal of the cylinder with dimensions shown to two decimal places:


Response:
$\qquad$
$\qquad$
$\qquad$

Question 3
Calculate the length of arc in the diagram shown to three significant figures:


Response:
$\qquad$
$\qquad$

## Answers

## Question 1



Answer $=25.98 \mathrm{~cm}$
Take note of the screen shot when the program is run below. Note that the "?" is entered for the unknown value.


## Question 2

Answer $=3.29 \mathrm{~m}$
Take note of the screen shot when the program is run below. Note that the "?" is entered for the unknown value.

| 1.1 | *Doc |
| :--- | :--- |
| fm_weblsin_ratio( |  |
| Opposite Side, $\mathrm{o}=$ ? ? |  |
| Hypotenuse, $\mathrm{h}=3.8$ |  |
| Angle, $\theta=60$ |  |
| Answer: 3.29089653438 | Done |

## Question 3

Answer $=75.16 \mathrm{~m}$


Take note of the screen shot when the program is run below. Note that the "?" is entered for the unknown value.

| 1.1 | *Doc |
| :--- | :--- |
| fm_weblcos_rule () | DEG $]$ |
| Angle C: 52 |  |
| Side c: ? |  |
| Side a: 76 |  |
| Side b: 92.2 |  |
| Answer: 75.1579258641 | Done |

## Question 4

Answer = $265 \mathrm{~m}^{2}$.
Take note of the screen shot when the program is run below. Note that the "?" is entered for the unknown value.


## Question 5

Answer $=4580 \mathrm{~km}$.
Take note of the screen shot when the program is run below. Note that the "?" is entered for the unknown value.

| 1.1 | *Doc |
| :--- | :--- |
| fm_weblarc_length () | DEG $\quad \times$ |
| radius $=6400$ |  |
| angle $=41$ |  |
| arc length ? |  |
| Answer: ?=4579.74395723 | Done |

Now your try

## Question 1



Answer $=19{ }^{\circ}$.

| 1.1 | *Doc |
| :--- | :--- |
| fm_weblsin_ratio() |  |
| Opposite Side, $\mathrm{o}=0.8$ |  |
| Hypotenuse, $\mathrm{h}=2.5$ |  |
| Angle, $\theta=$ ? |  |
| Answer: 18.6629248849 | Done |

## Question 2

Answer $=51.97 \mathrm{~cm}$


## Question 3

Answer $=9.34 \mathrm{~m}$.

| 1.1 | *Doc |
| :--- | :---: |
| fm_weblarc_length () | DEG $\times$ |
| radius $=5$ |  |
| angle $=107$ |  |
| arc length ? |  |
| Answer: ?=9.33751149817 | Done |

