Creating User Defined Functions for Further Mathematics Modules

TEXAS INSTRUMENTS

Author: Craig Browne

Each of the questions included here can be solved using either the TI-Nspire CX or CX CAS.

Question 1

Calculate the height of the cone shown below, rounded to two decimal places:

Response:

© Texas Instruments 2020.

Calculate the height the ladder reaches up the wall in the diagram below, writing your answer to two decimal places:

TEXAS INSTRUMENTS

Response:

Question 3

Calculate the length of AB for the triangle shown below to 2 decimal places. Lengths are measured in cm:

Response:

© Texas Instruments 2020.

Calculate the area of the sector as shown in the diagram below to 3 significant figures:

Į,

Texas Instruments

Response:

Question 5

Wellington is located at (41S, 175 E) as shown in the diagram below:

Calculate the distance to the equator to the nearest km if the radius of the earth is 6400 km.

Response:

© Texas Instruments 2020.

Now your try!!

0.8 m

Ű.

Texas Instruments

Question 1

A window in the wall of a house has the following dimensions:

Calculate the value of the angle to the nearest degree.

Response:

Question 2

Calculate the diagonal of the cylinder with dimensions shown to two decimal places:

Response:

© Texas Instruments 2020.

Calculate the length of arc in the diagram shown to three significant figures:

Response:

© Texas Instruments 2020.

Answers

Question 1

Answer = 25.98 cm

Take note of the screen shot when the program is run below. Note that the "?" is entered for the unknown value.

∢ 1.1 ▶	*Doc	DEG 📒 🗙
fm_web\pythag()	^
a = 15		
b = ?		
c = 30		
Answer:		
?=-25.980762	1135 or ?=25.980	7621135
		Done
		•

Question 2

Answer = 3.29 m

Take note of the screen shot when the program is run below. Note that the "?" is entered for the unknown value.

∢ 1.1 ▶	*Doc	DEG 📘 🗙
fm_web\sin_rati	io()	^
Opposite Side,	o= ?	
Hypotenuse, h	= 3.8	
Angle, θ= 60		
Answer: 3.290)89653438	
		Done
		-

Answer = 75.16 m

Take note of the screen shot when the program is run below. Note that the "?" is entered for the unknown value

∢ 1.1 ▶	*Doc	DEG 📘 🗙
fm_web\cos_rule()	^
Angle C: 52		
Side c: ?		
Side a: 76		
Side b: 92.2		
Answer: 75.1579	9258641	
		Done
		•

Question 4

Answer = 265 m^2 .

Take note of the screen shot when the program is run below. Note that the "?" is entered for the unknown value.

↓ 1.1 ▶	*Doc	DEG 🚺 🗙
fm_web\area_s	sector()	^
radius, r: 15		
angle,θ135		
area, a: 🤉		
Answer: ?=26	65.071880147	
		Done
		-

Question 5

Answer = 4580 km.

Take note of the screen shot when the program is run below. Note that the "?" is entered for the unknown value.

∢ 1.1 ▶	*Doc	DEG 🚺 🗙
fm_web\arc_len	gth()	•
radius = 6400		
angle = 41		
arc length ?		
Answer: ?=45	79.74395723	
		Done
		•

© Texas Instruments 2020.

Now your try

Question 1

Answer = 19°.

∢ 1.1 ▶	*Doc	DEG 📘 🗙
fm_web\sin_ra	ntio()	•
Opposite Side	e,o= 0.8	
Hypotenuse,	h= 2.5	
Angle, $\theta = ?$		
Answer: 18.6	5629248849	
		Done
		•

Question 2

Answer = 51.97 cm ▲ 1.1 ▶ *Doc fm_web/pythag() a = 26.

b = 45.	
c = 5	
Answer:	
?=-51.9711458407 or ?=51.97114584	£07
	Done

DEG 🚺 🗙

Question 3

Answer = 9.34	<u>m.</u>	.
◀ 1.1 ▶	*Doc	DEG 📘 🗙
fm_web\arc_len	gth()	
radius = 5		
angle = 107		
arc length ?		ĸ
Answer: ?=9.3	3751149817	
		Done
I		

