Mathematical Methods with TI-Nspire[™]CX CAS

Exam-Style Questions Part 2: Calculus Webinar questions and student revision questions

I

Texas Instruments

Author: Peter Flynn Each of the questions included here can be solved using the TI-Nspire CX technology.

Question 1

Let $g: R \to R, g(x) = -x^3 - 3x^2 + 24x - 8$.

(a) Find g'(x).

(b) Determine the coordinates and the nature of the stationary points on the graph of g. Response:

Question 2

Let
$$f: R \to R, f(x) = xe^{-x^2}$$

(a) Find f'(x).

(b) Determine the exact coordinates and the nature of the stationary points on the graph of f. Response:

Question 3

Over a particular 24-hour period at town H, the temperature, $h^{\circ}C$, at time t hours after 6am can be modelled by

$$h(t) = -\frac{1}{18}(t-12)^2 + 25, \ 0 \le t \le 24$$

Over the same 24-hour period at town W, the temperature, $w^{\circ}C$, at time *t* hours after 6am can be modelled by $w(t) = 21 - 4\cos\left(\frac{\pi t}{12}\right), \ 0 \le t \le 24$.

The difference in temperature, $d^{\circ}C$, is given by d(t) = h(t) - w(t), $0 \le t \le 24$.

- (a) Find, correct to two decimal places, the values of *t* for which the maximum difference in temperature occurs.
- (b) Find, correct to one decimal place, the maximum difference in temperature.

Response:

© Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question 4

The amount of drug, *D* milligrams, in the bloodstream at time *t* hours after it is administered is given by $D = 2e^{-0.1t}$, $0 \le t \le 2$. Find the average amount of drug present in the bloodstream over the first 2 hours after it was administered. Give your answer correct to two decimal places.

Response:

Question 5

The air temperature in a particular suburb during a period of 12 hours can be modelled by $W = 12 + 3t - 0.17t^2$, $0 \le t \le 12$, where *t* is measured in hours and *W* in degrees Celsius. Find, correct to the nearest tenth of a degree, the average temperature during the entire 12-hour period.

Response:

Question 6

The exact minimum value of the function defined by $f:[0,\pi] \rightarrow R$ where $f(x) = \frac{x}{2} + \cos(x)$ is											
A	$\frac{\pi}{6}$	В	$\frac{5\pi}{6}$	С	$\frac{\pi}{12} + \frac{\chi}{2}$	$\frac{\sqrt{3}}{2}$	D	$\frac{5\pi}{12}$	$-\frac{\sqrt{3}}{2}$	E	0
Response:											
Question 7											
The tangent to the curve $y = e^{x^2}$ at $x = 2$ meets the y- axis at the point											
А	$\left(0,7e^4 ight)$	В	$\left(0, 3e^4\right)$		С	(0, 0)					
D	$(0, -3e^4)$	Е	$\left(0,-7e^4\right)$								
Response:											

[©] Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question 8If $\int_{0}^{\pi} k \sin(x) dx = 10$, then the value of k isA-10B-5C $\frac{10}{\pi}$ DD5EResponse:

Answers

1	(a)	$g'(x) = -3x^2 - 6x + 24$	(b)	$\left(-4,-88 ight)$ local min and $\left(2,20 ight)$ local max				
2	(a)	$f'(x) = (1 - 2x^2)e^{-x^2}$	(b)	$\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2e}}\right)$ local min and $\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2e}}\right)$ local max				
3	(a)	t = 3.93, 20.07 (hours)	(b)	2.4°C				
4	1.81 (mg)							
5	21.8°C							
6	D							
7	Е							
8	D							

© Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

