Mathematical Methods with TI-Nspire ${ }^{\text {TM }}$ CX CAS

Exam-Style Questions

Part 2: Calculus

Webinar questions and student revision questions

Author: Peter Flynn

Each of the questions included here can be solved using the TI-Nspire CX technology.

Question 1

Let $g: R \rightarrow R, g(x)=-x^{3}-3 x^{2}+24 x-8$.
(a) Find $g^{\prime}(x)$.
(b) Determine the coordinates and the nature of the stationary points on the graph of g.
Response:

Question 2

Let $f: R \rightarrow R, f(x)=x e^{-x^{2}}$.
(a) Find $f^{\prime}(x)$.
(b) Determine the exact coordinates and the nature of the stationary points on the graph of f.

Response:

Question 3

Over a particular 24-hour period at town H , the temperature, $h^{\circ} \mathrm{C}$, at time t hours after 6am can be modelled by $h(t)=-\frac{1}{18}(t-12)^{2}+25,0 \leq t \leq 24$.
Over the same 24 -hour period at town W , the temperature, $w^{\circ} \mathrm{C}$, at time t hours after 6am can be modelled by
$w(t)=21-4 \cos \left(\frac{\pi t}{12}\right), 0 \leq t \leq 24$.
The difference in temperature, $d^{\circ} \mathrm{C}$, is given by $d(t)=h(t)-w(t), 0 \leq t \leq 24$.
(a) Find, correct to two decimal places, the values of t for which the maximum difference in temperature occurs.
(b) Find, correct to one decimal place, the maximum difference in temperature.

Response:

Question 4

The amount of drug, D milligrams, in the bloodstream at time t hours after it is administered is given by $D=2 e^{-0.1 t}$, $0 \leq t \leq 2$. Find the average amount of drug present in the bloodstream over the first 2 hours after it was administered. Give your answer correct to two decimal places.

Response:

Question 5

The air temperature in a particular suburb during a period of 12 hours can be modelled by $W=12+3 t-0.17 t^{2}$, $0 \leq t \leq 12$, where t is measured in hours and W in degrees Celsius. Find, correct to the nearest tenth of a degree, the average temperature during the entire 12 -hour period.

Response:

Question 6

The exact minimum value of the function defined by $f:[0, \pi] \rightarrow R$ where $f(x)=\frac{x}{2}+\cos (x)$ is
A $\quad \frac{\pi}{6}$
B $\frac{5 \pi}{6}$
C $\frac{\pi}{12}+\frac{\sqrt{3}}{2}$
D $\frac{5 \pi}{12}-\frac{\sqrt{3}}{2}$
E 0

Response:
\qquad

Question 7

The tangent to the curve $y=e^{x^{2}}$ at $x=2$ meets the y-axis at the point
A $\quad\left(0,7 e^{4}\right)$
B $\quad\left(0,3 e^{4}\right)$
C $\quad(0,0)$
D $\quad\left(0,-3 e^{4}\right)$
E $\quad\left(0,-7 e^{4}\right)$

Response:

Question 8
If $\int_{0}^{\pi} k \sin (x) d x=10$, then the value of k is
A $\quad-10$
B $\quad-5$
C $\frac{10}{\pi}$
D 5
E 10

Response:

Answers

1
(a) $g^{\prime}(x)=-3 x^{2}-6 x+24$
(b) $(-4,-88)$ local min and $(2,20)$ local max

2
(a) $\quad f^{\prime}(x)=\left(1-2 x^{2}\right) e^{-x^{2}}$
(b) $\quad\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2 e}}\right)$ local min and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2 e}}\right)$ local max

3
(a) $t=3.93,20.07$ (hours) \quad (b) $\quad 2.4^{\circ} \mathrm{C}$
$4 \quad 1.81(\mathrm{mg})$
$5 \quad 21.8^{\circ} \mathrm{C}$
6 D
7 E
8 D

