Mathematical Methods with TI-Nspire[™]CX CAS Mathematical Methods Exam-Style Questions Part 1: Functions and their graphs Webinar questions and student revision questions

Author: Frank Moya

Each of the questions included here can be solved using the TI-Nspire CX CAS.

Multiple representations: graphical, algebraic, numerical and tables/lists

Question 1

Consider the functions $f: R \to R$, $f(x) = x^3 - 3x + 3$ and $g: R \to R$, $g(x) = -\frac{1}{4}(9x - 13)$.

- a. On the same set of axes, obtain graphs of f and g with suitable window settings. Add a lined grid to the graphs.
- b. Use a graphical method to find the coordinates of the points of intersection of the graphs of f and g.
- c. Obtain tables of values for the graphs of these functions.
 - i. Explore changing the table settings.
 - ii. Use the table to confirm the points of intersection
- d. In a Calculator page, use two different methods to find the coordinates of the points of intersection of the graphs.

Response:

Piecewise (hybrid) functions Question 2

Insert a new problem in your document.

Use an efficient method to define the piecewise function $f(x) = \begin{cases} 4-x^2, & x \in [-3,3] \\ x^2-14, & x \in R \setminus [-3,3] \end{cases}$ on your TI-Nspire.

Obtain a graph of f and of the line y = 2x + 4.

Find the exact coordinates of all points of intersection of the graph of f and of the line y = 2x + 4.

Response:

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Page 1 of 4

[©] Texas Instruments 2020.

Multiple-choice Questions

Question 3 Implied or maximal domain

Consider the function $f: D \to R$, $f(x) = 3x + \log_e(3-2x)$, where D is the **maximal domain**.

Therefore, D is

R	[3,∞)	(-∞,3)
$\left[\frac{3}{2},\infty\right)$	$\left(-\infty,\frac{3}{2}\right)$	

Response:

Question 4 Other properties of the function

The function f is defined as in Question 3 above. Use the graph of f and other tools to explore the **range** of f. Set up an editable Notes page template for key properties of the function. These might include:

- Domain
- Roots
- Coordinates of function maximum/minimum to help determine the range.

Response:

Question 5

Explore different methods to solve this problem.

Let $f: R \to R$, $f(x) = 8 + 4x - x^4$.

If $f(x) = (2-x)(ax^3 + bx^2 + cx + d)$, then

A. $a = 1, b = 2, c = 4, d = 4$	B. $a = 1, b = -2, c = -4, d = 4$	C. $a = -1, b = 2, c = 4, d = -1$
D. $a = 0, b = 2, c = 4, d = 4$	E. $a = 0, b = 2, c = -2, d = 1$	

Response:

Question 6 Fraction tools

Let $g: D \to R$, $g(x) = \frac{4x+2}{2-x}$.

If $g(x) = p + \frac{q}{2-x}$, where p, q are positive integers, then

A. $p = 4, q = 2$	B. $p = -4, q = 2$	C. $p = -4, q = 10$
D. $p = -4, q = -10$	E. $p = -4, q = -2$	

Response:

Question 7 Rational functions

Let $g: D \to R$, $g(x) = \frac{4x+2}{2-x}$. The maximal domain, D, and equations of the vertical and horizontal asymptotes of the graph of g are, respectively

A. $R \setminus \{2\}, x = 2, y = 4$	B. $R \setminus \{2\}, x = 2, y = -4$	C. $R \setminus \{-2\}, x = -2, y = -4$
D. $R \setminus \{4\}, x = 4, y = -2$	E. $R \setminus \{-4\}, x = -4, y = 2$	

Response:

Question 8 Inverses

The inverse of $h: (-\infty, 2) \to R$, $h(x) = \frac{1}{\sqrt{3-x}}$ is

A. $h^{-1}: R \setminus \{0\} \to R, h^{-1}(x) = \frac{1}{3 - x^2}$	B. $h^{-1}: R^+ \to R, h^{-1}(x) = x^2 - 3$
C. $h^{-1}: \mathbb{R}^+ \to \mathbb{R}, h^{-1}(x) = 3 - \frac{1}{x^2}$	D. $h^{-1}:(3,\infty) \to R, h^{-1}(x) = 3 - x^2$
E. $h^{-1}:(0,1] \to R, h^{-1}(x) = 3 - \frac{1}{x^2}$	

Response:

Page 3 of 4

Question 9 Functional equations

The function f satisfies the relation $(f(x))^2 = f(2x) + 2$ for all real numbers x.

The rule for f could be

A. $f(x) = x - 2$	B. $f(x) = \sin(x)$	C. $f(x) = x^2 + 4$
D. $f(x) = e^{x} + e^{-x}$	$\mathbf{E.} \ f(x) = 2\log_e(x+4)$	

Response:

Question 10 Trigonometric equations

The sum of the solutions to the equation
$$-3\sin(2x) = \sqrt{3}\cos(2x)$$
 for $x = [-\pi, k]$ is $\frac{5\pi}{3}$

The value of k could be (same A – E as Q. 6 above).

A. $\frac{\pi}{6}$	B. $\frac{2\pi}{3}$	C. $\frac{5\pi}{6}$
D. $\frac{4\pi}{3}$	E. $\frac{13\pi}{3}$	

Response:

Question 11 Simultaneous linear equations

The equations ax - 3y = 5 and 3x - ay - 8 + a = 0 will have

- a. a unique solution when (choose from options A-E below)
- b. no solution when (choose from options A-E below)
- c. infinitely many solutions when (choose from options A-E below)

A. $a \in \{-3, 3\}$	B. $a \in [-3,3]$	C. $a \in R \setminus \{-3, 3\}$
D. $a = -3$	E. $a = 3$	

Response:

© Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Page 4 of 4