Mathematical Methods with TI-Nspire[™]CX CAS Applications of Integral Calculus

Revision Worksheet with solutions - may be completed after viewing the webinar

Author: Frank Moya

Each of the questions included here can be solved using either the TI-Nspire CX or CX CAS.

Finding a function from a known rate of change given a boundary condition Question 1

Water is pumped out of a swimming pool at a constant rate of 800 litres/hour. That is, the rate of change in the volume of water is given by V'(t) = -800 litres/hour.

If the volume of water remaining in the pool is 12 000 litres at time t = 5 hours, find an expression for V(t), the of water in the pool at time t hours.

Response:

Calculation of the area of a region under a curve

Question 2

Consider the function $f:[-2,\infty) \to R$, $f(x) = 4 - x^2$.

- a. Find the area of the region bounded by the graph of f, the *x*-axis and the line x = 3, over the interval $x \in [-2,3]$.
- b. Evaluate $\int_{-2}^{3} (4 x^2) dx$. Explain why this answer is not the same as the answer to part a. above.

Response:

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

U,

Texas Instruments

Consider the piecewise (hybrid) function $f(x) = \begin{cases} \sqrt{x} & 0 \le x \le 4\\ 6-x & 4 < x \le 6 \end{cases}$.

Find the area of the region enclosed by the graph of f and the x-axis.

Response:

Calculation of the areas between curves Question 4

The graph of the function with rule $f(x) = 8 - 2^x$ intersects the axes at the points *P* and *Q*, as shown below. Also shown on the graph is the line segment joining *P* and *Q*.

Find the area of the shaded region.

Response:

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Consider the function $g: R \rightarrow R, f(x) = 9 - x^2$

- a. Find the equation of the tangent to the graph of g at the point where x = 1.
- b. Find the area of the region bounded by the graph of g, the tangent and the line x = 3.
- c. Find the area of the region bounded by the graph of g, the tangent and the x-axis.

Response:

Distance travelled in a straight line Question 6

The speed, v m/s of a body moving in a straight line is modelled by the function $v(t) = 2t + 1, t \ge 0$.

The distance travelled by the body is given by the area under the graph of v.

- a. Find the distance that the body travels in the first 20 seconds
- b. Given that the distance travelled by the body over the interval $t \in [12, k]$ is 656 m, find the value of k.

Response:

Average value of a function

Question 7

The graph of a function $f:[2,14] \rightarrow R$ is shown below.

© Texas Instruments 2020.

The amount, *c* milligrams, of a medication in the bloodstream, *t* minutes after it is administered, is modelled by the function $c(t) = kte^{-\frac{t}{10}}, t \ge 0$, where k > 1.

The average amount of the medication in the bloodstream over the interval $t \in [3,16k]$ is found to be 5.89 milligrams. Find the value of k, correct to two decimal places.

Response:

Answers

Question 1

Answer: V(t) = 16000 - 800t

© Q.1		^
$\nu(t) := \int -800 \mathrm{d}t + c$	Done	
solve(v(5)=12000,t)	c=16000	
v(t) c=16000	16000-800• t	

Question 2

a. Area = 13

b. b. Integral =
$$\frac{25}{3} = 8\frac{1}{3}$$
. Part a. $10\frac{2}{3} - \left(-2\frac{1}{3}\right) = 13$, whereas Part b. $10\frac{2}{3} - 2\frac{1}{3} = 8\frac{1}{3}$.

Bounded area calculated graphically between y = f(x) and y = 0 over interval [-2,3].

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Done

7

x=3

Question 4

Answer: $\frac{27}{2} - \frac{7}{\log_e(2)}$ © Question 2 $f(x) := 8 - 2^{X}$ © Point P at x=0, Point Q at f(x)=0

Question 5

solve(f(x)=0,x)

†(0)

a. y = 10 - 2x

© Texas Instruments 2020.

 $Av = 2 + \left(\frac{7-2}{2}\right) = \frac{9}{2}$. (The function increases and decreases at a constant rate, so the average value is half-way between y = 2 and y = 7. Calculus is not required to determine the average value in this case.)

Question 8

k = 2.50 (correct to two decimal places).

