Mathematical Methods with TI-Nspire ${ }^{T M}$ CX CAS

Applications of Integral Calculus

Revision Worksheet with solutions - may be completed after viewing the webinar

Author: Frank Moya

Each of the questions included here can be solved using either the TI-Nspire CX or CX CAS.

Finding a function from a known rate of change given a boundary condition
Question 1
Water is pumped out of a swimming pool at a constant rate of 800 litres/hour. That is, the rate of change in the volume of water is given by $V^{\prime}(t)=-800$ litres/hour.
If the volume of water remaining in the pool is 12000 litres at time $t=5$ hours, find an expression for $V(t)$, the of water in the pool at time t hours.

Response:

Calculation of the area of a region under a curve

Question 2
Consider the function $f:[-2, \infty) \rightarrow R, f(x)=4-x^{2}$.
a. Find the area of the region bounded by the graph of f, the x-axis and the line $x=3$, over the interval $x \in[-2,3]$.
b. Evaluate $\int_{-2}^{3}\left(4-x^{2}\right) d x$. Explain why this answer is not the same as the answer to part a. above.

Response:

Question 3

Consider the piecewise (hybrid) function $f(x)=\left\{\begin{array}{cc}\sqrt{x} & 0 \leq x \leq 4 \\ 6-x & 4<x \leq 6\end{array}\right.$.

Find the area of the region enclosed by the graph of f and the x-axis.
Response:

Calculation of the areas between curves

Question 4

The graph of the function with rule $f(x)=8-2^{x}$ intersects the axes at the points P and Q, as shown below. Also shown on the graph is the line segment joining P and Q.

Find the area of the shaded region.
Response:

Question 5

Consider the function $g: R \rightarrow R, f(x)=9-x^{2}$

a. Find the equation of the tangent to the graph of g at the point where $x=1$.
b. Find the area of the region bounded by the graph of g, the tangent and the line $x=3$.
c. Find the area of the region bounded by the graph of g, the tangent and the x-axis.

Response:

Distance travelled in a straight line
 Question 6

The speed, $v \mathrm{~m} / \mathrm{s}$ of a body moving in a straight line is modelled by the function $v(t)=2 t+1, t \geq 0$.
The distance travelled by the body is given by the area under the graph of v.
a. Find the distance that the body travels in the first 20 seconds
b. Given that the distance travelled by the body over the interval $t \in[12, k]$ is 656 m , find the value of k.

Response:

Average value of a function

Question 7

The graph of a function $f:[2,14] \rightarrow R$ is shown below.

Find average value of f over the interval $[2,14]$.

Question 8

The amount, c milligrams, of a medication in the bloodstream, t minutes after it is administered, is modelled by the function $c(t)=k t e^{-\frac{t}{10}}, t \geq 0$, where $k>1$.

The average amount of the medication in the bloodstream over the interval $t \in[3,16 k]$ is found to be 5.89 milligrams. Find the value of k, correct to two decimal places.

Response:

Answers

Question 1

Answer: $V(t)=16000-800 t$
$\left[\begin{array}{lr}\text { © Q. } 1 & \\ v(t):=\int-800 \mathrm{~d} t+c & \text { Done } \\ \text { solve }(v(5)=12000, t) & c=16000 \\ v(t) \mid c=16000 & 16000-800 \cdot t\end{array}\right]$

Question 2

a. Area $=13$
b. b. Integral $=\frac{25}{3}=8 \frac{1}{3}$. Part a. $10 \frac{2}{3}-\left(-2 \frac{1}{3}\right)=13$, whereas Part b. $10 \frac{2}{3}-2 \frac{1}{3}=8 \frac{1}{3}$.

Integral - calculated graphically

Integral - calculated graphically

Bounded area calculated graphically between $y=f(x)$ and $y=0$ over interval $[-2,3]$.

Question 3

Answer: $\frac{22}{3}=7 \frac{1}{3}$

$f(x):= \begin{cases}\sqrt{x}, 0 \leq x \leq 4 \\ 6-x, 4<x \leq 6\end{cases}$	Done
$\int_{0}^{6} f(x) \mathrm{d} x$	$\frac{22}{3}$
1	

Question 4
Answer: $\frac{27}{2}-\frac{7}{\log _{e}(2)}$

© Question 2	
$f(x):=8-2^{x}$	Done
(- Point P at $\mathrm{x}=0$, Point Q at $\mathrm{f}(\mathrm{x})=0$	
A0)	7
solve $(f(x)=0, x)$	$x=3$

© Equation of $\mathrm{PQ}: \mathrm{m}=-\frac{7}{3}$ and $\mathrm{c}=7$
$\mathrm{~g}(\mathrm{x}):=\frac{-7}{3} \cdot x+7$
(C Area between $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\mathrm{y}=\mathrm{g}(\mathrm{x})$
$\int_{0}^{3}(f(x)-\mathrm{g}(x)) \mathrm{d} x$

Question 5

a. $y=10-2 x$
b. $\frac{8}{3}$
c. $\frac{20}{3}$

$2.1 \quad 2.2$	R.1 *App_inte..ion
© Q.5	
$f(x):=9-x^{2}$	Done
© Q.5a. Equation of tangent at $\mathrm{x}=1$	
$g(x):=$ tangentLine $(f(x), x=1)$	Done
$g(x)$	$10-2 \cdot x$

	RAD $] \times$
(c) Q.5b. Area: $\mathrm{y}=\mathrm{f}(\mathrm{x})$, tangent and $\mathrm{x}=3$	
$\int_{1}^{3}(g(x)-f(x)) \mathrm{d} x$	$\frac{8}{3}$
(c) Q.5c. Area: $\mathrm{y}=\mathrm{f}(\mathrm{x})$, tangent and $\mathrm{x}=$ axis	
$\int_{1}^{3}(g(x)-f(x)) \mathrm{d} x+\int_{3}^{5} g(x) d x$	$\frac{20}{3}$

Question 6

a. 420 metres b. $k=28$
$\begin{array}{l}v(t):=2 \cdot t+1 \\ \text { (C) Q. 6a. Distance first } 20 \text { seconds } \\ \int_{0}^{20} v(t) \mathrm{d} t \\ \text { © Q. } 6 \mathrm{~b} . \text { Find } \mathrm{k} \text { if distance }=656,12 \leq \mathrm{t} \leq \mathrm{k} \\ \text { solve }\left(\int_{12}^{k} v(t) \mathrm{d} t=656, k\right) \\ k=-29 \text { or } k=28\end{array}$

Question 7

$A v=2+\left(\frac{7-2}{2}\right)=\frac{9}{2}$. (The function increases and decreases at a constant rate, so the average value is half-way between $y=2$ and $y=7$. Calculus is not required to determine the average value in this case.)

Question 8

$k=2.50$ (correct to two decimal places).
© Question 7
$v(t):=k \cdot t \cdot \mathrm{e}^{\frac{-t}{10}}$
solve $\left(\frac{1}{16 \cdot k-3} \cdot \int_{3}^{16 \cdot k} v(t) \mathrm{d} t=5.89, k \mid k>1\right.$
$k=2.50264$

