Mathematical Methods with TI-NspireTM CX CAS

Antidifferentiation and Integration

Revision Worksheet with solutions - may be completed after viewing the webinar

Author: Frank Moya

Each of the questions included here can be solved using either the TI-Nspire CX or CX CAS.

Question 1

a. Find the rule of the function $f: R \rightarrow R$ if $f^{\prime}(x)=4 x^{3}-6 x+2$ and the point with coordinates $\left(-1,-\frac{5}{2}\right)$ is on the graph of f.

Response:

Question 2

For the functions f^{\prime} and f in Question 1 above, display on your TI-Nspire the graph of $y=f^{\prime}(x)$ and the graph of $y=f(x)$.

Hence describe the relation between key features of the graph of the antiderivative function, f, and the graph of the original function, f^{\prime}.

Response:
\qquad
\qquad

Question 3

Consider the function $f:\left(\frac{1}{2}, \infty\right) \rightarrow R, f(x)=\frac{3}{(2 x-1)^{\frac{3}{2}}}$.
If the graph of an antiderivative, with equation $y=F(x)$, where $F^{\prime}(x)=f(x)$, intersects the x-axis at $x=1$, then $F(x)$ is equal to
A. $\frac{-9}{(2 x-1)^{\frac{5}{2}}}$
B. $\frac{-9}{(2 x-1)^{\frac{1}{2}}}$
C. $\frac{-3}{(2 x-1)^{\frac{5}{2}}}+3$
D. $\frac{-3}{(2 x-1)^{\frac{1}{2}}}$
E. $\frac{-3}{(2 x-1)^{\frac{1}{2}}}+3$

Question 4

A part of the graph of the function f is shown below.

Which one of the following, A to E , could be a graph of an antiderivative of the function f ?

Questions 5 and 6 refer to the following.

The rule of the function g is $g(x)=2^{x}+k$.
The area between the graph of g and the x-axis, over the interval $[-1,2]$, is approximated using the six right rectangles shown below.

Question 5

If the approximated area is $\frac{80+7 \sqrt{2}}{4}$, the value of k is
A. 4
B. $\frac{9}{2}$
C. 5
D. $\frac{11}{2}$
E. 6

Response:

Question 6

The exact area between the x-axis and the graph of g, over the interval $[-1,2]$ is closest to
A. 21.00
B. 21.55
C. 22.00
D. 22.48
E. 23.56

Response:

Question 7

If $\int_{-3}^{3} a\left(x^{2}+1\right) d x=-2$, then the value of a is
A. $\frac{1}{6}$
B. $-\frac{1}{6}$
C. $-\frac{1}{12}$
D. $\frac{1}{12}$
E. $-\frac{2}{33}$

Response:

Answers

Question 1

$$
f(x)=x^{4}-3 x^{2}+2 x+\frac{3}{2}
$$

(©) Question 1	Done
$f(x):=\int\left(4 \cdot x^{3}-6 \cdot x+2\right) \mathrm{d} x+c$	$c=\frac{3}{2}$
solve $\left(f(-1)=\frac{-5}{2}, c\right)$	$x^{4}-3 \cdot x^{2}+2 \cdot x+\frac{3}{2}$
$f(x) \left\lvert\, c=\frac{3}{2}\right.$	

Question 2

Question 3

Answer: $\mathrm{E} \frac{-3}{(2 x-1)^{\frac{1}{2}}}+3$

© © Question 3	
$g(x):=\int \frac{3}{(2 \cdot x-1)^{\frac{3}{2}}} d x+c$	Done
solve $(g(1)=0, c)$	$c=3$
$\triangle^{g(x) \mid c=3}$	$3-\frac{3}{\sqrt{2 \cdot x-1}}$

Question 4

Answer: B. $y=f(x)$ could be a positive cubic graph with a 'double root' at the origin. An antiderivative could therefore be a positive quartic graph with an inflection at $x=0$.
Try graphing, for example, $y=x^{2}(x+2)$ and an antiderivative, $y=\int\left(x^{2}(x+2)\right) d x+c($ with suitable c).

Question 5
Answer: D $\frac{11}{2}$

Question 6

Answer: B 21.55 is closest to the exact answer

solve $\left(\right.$ area $\left.=\frac{80+7 \cdot \sqrt{2}}{4}, k\right)$
© Question 6: Decimal ans: <ctrl>+<enter>
$\int_{-1}^{2} g(x) \mathrm{d} x \left\lvert\, k=\frac{11}{2}\right.$

Question 7

Answer: $\mathrm{C}-\frac{1}{12}$

© Question 7	
$\int_{-3}^{3}\left(a \cdot\left(x^{2}+1\right)\right) d x$	$24 \cdot a$
$\operatorname{solve}(24 \cdot a=-2, a)$	$a=\frac{-1}{12}$

