# Mathematical Methods with TI-Nspire<sup>™</sup>CX CAS Antidifferentiation and Integration



Revision Worksheet with solutions - may be completed after viewing the webinar

# Author: Frank Moya

Each of the questions included here can be solved using either the TI-Nspire CX or CX CAS.

# **Question 1**

a. Find the rule of the function  $f: R \to R$  if  $f'(x) = 4x^3 - 6x + 2$  and the point with coordinates  $\left(-1, -\frac{5}{2}\right)$  is on the graph of f.

Response:

# **Question 2**

For the functions f' and f in Question 1 above, display on your TI-Nspire the graph of y = f'(x) and the graph of y = f(x).

Hence describe the relation between key features of the graph of the antiderivative function, f, and the graph of the original function, f'.

## Response:

## **Question 3**

Consider the function 
$$f:\left(\frac{1}{2},\infty\right) \to R, f(x) = \frac{3}{\left(2x-1\right)^{\frac{3}{2}}}$$
.

If the graph of an antiderivative, with equation y = F(x), where F'(x) = f(x), intersects the *x*-axis at x = 1, then F(x) is equal to

A. 
$$\frac{-9}{(2x-1)^{\frac{5}{2}}}$$
 B.  $\frac{-9}{(2x-1)^{\frac{1}{2}}}$  C.  $\frac{-3}{(2x-1)^{\frac{5}{2}}} + 3$  D.  $\frac{-3}{(2x-1)^{\frac{1}{2}}}$  E.  $\frac{-3}{(2x-1)^{\frac{1}{2}}} + 3$ 

© Texas Instruments 2020.





A part of the graph of the function f is shown below.



Which one of the following, A to E, could be a graph of an antiderivative of the function f?



# Questions 5 and 6 refer to the following.

The rule of the function g is  $g(x) = 2^x + k$ .

The area between the graph of g and the x-axis, over the interval [-1, 2], is approximated using the six right rectangles shown below.



© Texas Instruments 2020.



If the approximated area is  $\frac{80+7\sqrt{2}}{4}$  , the value of k is B.  $\frac{9}{2}$  C. 5 D.  $\frac{11}{2}$  E. 6



Response:

A. 4

#### **Question 6**

| The exact area between the $x$ -axis and the graph of $g$ , over the interval $[-1,2]$ is closest to |          |          |          |          |
|------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|
| A. 21.00                                                                                             | B. 21.55 | C. 22.00 | D. 22.48 | E. 23.56 |
| Response:                                                                                            |          |          |          |          |

#### **Question 7**

If 
$$\int_{-3}^{3} a(x^2 + 1) dx = -2$$
, then the value of  $a$  is  
A.  $\frac{1}{6}$  B.  $-\frac{1}{6}$  C.  $-\frac{1}{12}$  D.  $\frac{1}{12}$  E.  $-\frac{2}{33}$ 

Response:

# **Answers**

## **Question 1**

$$f(x) = x^4 - 3x^2 + 2x + \frac{3}{2}$$

© Question 1  

$$f(x):= \int (4 \cdot x^3 - 6 \cdot x + 2) dx + c$$
 Done  
solve  $\left( f(-1) = \frac{-5}{2}, c \right)$   $c = \frac{3}{2}$   
 $f(x) | c = \frac{3}{2}$   $x^4 - 3 \cdot x^2 + 2 \cdot x + \frac{3}{2}$ 

© Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.







| <b>Original graph</b><br>y = f(x) | Antiderivative graph<br>y = F(x) |  |  |
|-----------------------------------|----------------------------------|--|--|
| f(x) < 0 (below x-axis)           | Decreasing (negative slope)      |  |  |
| f(x) = 0 (intersects x-axis)      | Stationary point (zero slope)    |  |  |
| f(x) > 0 (above x-axis)           | Increasing (positive slope)      |  |  |
| Turning point $(f'(x) = 0)$       | Point of inflection              |  |  |

# **Question 3**



## **Question 4**

Answer: B. y = f(x) could be a positive cubic graph with a 'double root' at the origin. An antiderivative could therefore be a positive quartic graph with an inflection at x = 0.

Try graphing, for example,  $y = x^2(x+2)$  and an antiderivative,  $y = \int (x^2(x+2)) dx + c$  (with suitable *c*).



© Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.



Answer: D  $\frac{11}{2}$ 



TEXAS INSTRUMENTS



# **Question 6**





## **Question 7**

Answer: C  $-\frac{1}{12}$ © Question 7  $\int_{-3}^{3} (a \cdot (x^2+1)) dx$ solve(24· a=-2,a)  $a = \frac{-1}{12}$ 

© Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.