Mathematics Methods Foundation - worksheet

Each of the questions included here can be solved using the TI-Nspire CX CAS.

Question 1

By applying the remainder theorem, find the remainder when $P(x)=-4 x^{3}+x^{2}-3 x+7$ is divided by $(x+1)$.
Response:
\qquad
\qquad
\qquad

Question 2

Solve $x^{2}-8 x-5=0$ by completing the square. Give answers in exact values.

Response:
\qquad
\qquad
\qquad

Question 3

Use calculus techniques to determine the gradient of $f(x)=4 x^{2}+8 x-3$ at the point where $x=-2$.

Response:
\qquad
\qquad
\qquad

Question 4

For the function $f(x)=\frac{2}{3} x^{3}-x^{2}-4 x+2$, use calculus techniques to find any stationary points and determine their nature.

Response:
\qquad
\qquad
\qquad

Solutions
Q1.

1.1	RAD $\square \times$
$p(x):=-4 \cdot x^{3}+x^{2}-3 \cdot x+7$	Done
$p(-1)$	15
1	

Q2.

1.1	RDD
completeSquare $\left(x^{2}-8 \cdot x-5, x\right)$	$(x-4)^{2}-21$
$\operatorname{solve}\left((x-4)^{2}-21=0, x\right)$	
$x=-(\sqrt{21}-4)$	or $x=\sqrt{21}+4$
RAD	

Q3.

Q4.

Hence a local maximum turning point at $\left(-1, \frac{13}{3}\right)$ and a local minimum turning point at $\left(2, \frac{-14}{3}\right)$.

