STUDENT REVISION SERIES

Mathematical Methods

Unit 2 Topic 3 Trigonometric Graphs
Each of the questions included here can be solved using either the TI-Nspire CX or CX CAS.

Question 1

Find all solutions to the equation $\cos (x)=\frac{1}{\sqrt{2}}$ for $x \in[0,4 \pi]$.
\qquad
\qquad
\qquad

Question 2

Find all solutions to the equation $2 \sin (x)-\sqrt{3}=0$ for $x \in[0,2 \pi]$
\qquad
\qquad
\qquad

Question 3

Sketch the graph of $y=2 \sin \left(x-\frac{\pi}{2}\right)+1$ for $x \in[0,2 \pi]$. List the x intercepts of the graph for this interval.
\qquad
\qquad
\qquad

Question 4
Sketch the graph of $y=2 \cos \left(x+\frac{\pi}{6}\right)-1$ for $x \in[0,2 \pi]$. List the x intercepts of the graph for this interval.

Question 5

The temperature, $T^{\circ} \mathrm{C}$, in a town over a day is modelled by the function with the rule $T=17-8 \cos \left(\frac{\pi t}{12}\right)$
where t is the time in hours after midnight, $0 \leq t \leq 24$
a) What is the temperature at (i) 3 am (ii) 2 pm ?
b) What are the minimum and maximum temperatures for the domain specified?
c) At what times of the day, to the nearest minute, are temperatures warmer than $20^{\circ} \mathrm{C}$?
d) Sketch the graph for the temperatures over a day.
\qquad

Answers

Using a geometry command in a Graph application: Menu > Geometry > Points and Lines > Intersection point(s) Choose the required graphs and all intersection points are labelled

Using Numerical Solve in a Calculator application; divide by π; Menu > Number > Approximate to fraction. To find subsequent solutions: copy the initial nSolve equation down, and add in the restriction $x>$ previous answer

$\therefore x=\frac{\pi}{4} ; \frac{7 \pi}{4} ; \frac{9 \pi}{4} ; \frac{15 \pi}{4}$

Question 2
Find exact solutions and verify with graph

$$
\therefore x=\frac{\pi}{3} ; \frac{2 \pi}{3}
$$

Question 3

Sketch the graph in a Graph application. Use the Window settings to make the x scale equal to C (phase shift).

Consider the tick marks on the x axis, to refine the scale. In this case, visually a better scale is $\frac{\pi}{6}$.
Change the scale to read off the x intercepts.

\therefore the x intercepts are $\frac{2 \pi}{6} ; \frac{10 \pi}{6}$ simplified to $\frac{\pi}{3} ; \frac{5 \pi}{3}$

Question 4
Sketch the graph in a Graph application. Use the Window settings to make the x scale equal to C (phase shift).

Consider the tick marks on the x axis, and read off the x intercepts Change the scale if required to read off the x intercepts.

$$
\therefore \text { the } x \text { intercepts are } \frac{\pi}{6} ; \frac{9 \pi}{6} \text { which simplifies to } \frac{\pi}{6} ; \frac{3 \pi}{2}
$$

Question 5

Sketch the graph in a Graph application. Set the window to reflect the domain and adjust the range to view the graph.

a) Place a point on the graph using the Geometry tools: Menu > Geometry > Points \& Lines > Point On Remember click once to select the graph, again to place the point and then ESC to drop the tool. Double click on the x coordinate and type the required x value. Repeat to find the y value when $x=14$

i) The temperature at 3 am is $11.3^{\circ} \mathrm{C}$
ii) The temperature at 2 pm is $23.9^{\circ} \mathrm{C}$
b) Use the Analyse Graph tool to find the maximum and minimum of the function.

The minimum temperature is $9^{\circ} \mathrm{C}$ and the maximum is $25^{\circ} \mathrm{C}$
c) This can also be done using the graph, but using Numerical Solve in a Calculator application allows for calculating to the nearest minute more easily.
Convert the decimal part of the solution to minutes to generate the answers of 7: 28 and 14:32

The temperature is warmer than $20^{\circ} \mathrm{C}$ at 7:28 and 14:32
d)

