Areas, Volumes and Arc Lengths Revision Sheet

Author: Stephen Crouch
Each of the questions included here can be solved using the TI-Nspire CX CAS.

Question 1

Consider the function $f: \mathbb{R}^{+} \backslash\left\{\frac{1}{4}\right\} \rightarrow \mathbb{R}, f(x)=\frac{1}{2 \sqrt{x}-1}$. Find the area A bounded by the graph of $y=f(x)$, the x-axis and the lines $x=1$ and $x=4$, in the form $\frac{1}{a}\left(a+\log _{e}(b)\right)$, where $a, b \in \mathbb{Z}^{+}$.

Response:

Question 2

If $f(x)=\frac{x}{\sqrt{2 x+1}}, x \in\left(-\frac{1}{2}, \infty\right)$ and $g(x)=-\frac{x}{\sqrt{3 x+1}}, x \in\left(-\frac{1}{3}, \infty\right)$, find the area of the region bounded by the graphs of $y=f(x), y=g(x)$ and the line $x=2$, giving your answer in the form $\frac{1}{27}(a \sqrt{5}+b \sqrt{7}+c)$. Response:

Question 3

The region bounded by the curve with equation $y=e^{x}+e^{-x}$, the x-axis and the lines $x=-1$ and $x=1$ is rotated about the x-axis to form a solid of revolution. Find the volume of this solid.

Response:

Question 4

A parabolic bowl whose curved edge is modelled by the curve with equation $y=\frac{1}{5} x^{2}$ has water poured in to a depth of 12 cm . What is the volume of water in the bowl, in cm^{3} ?

Response:

Question 5

The curve shown below has equation $y=\frac{2}{3}\left(x^{2}+1\right)^{\frac{3}{2}}$. The arc of the curve from $x=3$ to $x=6$ is shown in bold.
Find the exact arc length of the curve with equation $y=\frac{2}{3}\left(x^{2}+1\right)^{\frac{3}{2}}$ over the interval $x \in[3,6]$.

Response:
\qquad
\qquad
\qquad

Answers*

Question 1

$A=\frac{1}{2}\left(2+\log _{e}(3)\right)$ square units
Define the function $f(x)$ in a Calculator application, then sketch it in a Graphs application, to visualise the region considered in the question, especially to check if the region is above or below the x-axis.

Given that this region is above the x-axis, the area is given by the integral $A=\int_{1}^{4} \frac{1}{2 \sqrt{x}-1} d x$. Solving this by hand requires a u substitution, where $u=\sqrt{x}$ and the integral is now
$A=\int_{1}^{2} \frac{2 u}{2 u-1} d u=\int_{1}^{2}\left(\frac{1}{2 u-1}+1\right) d u$.
This integral is able to be calculated by hand.
Using the TI-Nspire CX CAS involves defining $f(x)$ and performing the integration, then using the factor command to convert the answer into the required form.

\1.1 1.2 \|	Areas, Vol...ths	Rad $\square \times$
$f(x):=\frac{1}{2 \cdot \sqrt{x}-1}$		Done
$\int_{1}^{4} f(x) d x$		$\frac{\ln (3)}{2}+1$
factor $\left(\frac{\ln (3)}{2}+1\right)$		$\frac{\ln (3)+2}{2}$
1.1 1.2	Areas, Vol..ths	Rad $\square \times$
7 y $1=f(x)$ 		\times
		5

Question 2

$\frac{1}{27}(9 \sqrt{5}+8 \sqrt{7}+13)$ square units
Define the functions $f(x)$ and $g(x)$ in a Calculator application, then sketch it in a Graphs application, to visualise the region bounded by the two curves and the line $x=2$. The function that is "on top" and "below" the region can also be checked.

The area of the region is given by the integral
$\int_{0}^{2}\left(\frac{x}{\sqrt{2 x+1}}-\left(-\frac{x}{\sqrt{3 x+1}}\right)\right) d x=\int_{0}^{2}\left(\frac{x}{\sqrt{2 x+1}}+\frac{x}{\sqrt{3 x+1}}\right) d x$.
This integral is able to be calculated by hand using linear substitution(s).
Using the TI-Nspire CX CAS involves defining $f(x)$ and $g(x)$ and then performing the integration, with the factor command being used to express the answer as a single fraction, as required by the question.

[^0]
Question 3

$\frac{\pi}{e^{2}}\left(e^{4}+4 e^{2}-1\right)$ cubic units
Sketch the curve in a Graphs application, to visualise the region bounded by the curve, the x-axis and the lines $x=-1$ and $x=1$. If desired, the solid of revolution may be sketched in a 3D Graphing page.

The volume of the solid is given by the integral $\pi \int_{0}^{2}\left(e^{x}+e^{-x}\right)^{2} d x$.
This integral is able to be calculated by hand by expanding the integrand and integrating term-by-term.

Using the TI-Nspire CX CAS involves typing out the integral including the terminals, ensuring the π is preceding the integral, and finally using the expand command to express the result in a different form.

Question 4

$360 \pi \mathrm{~cm}^{3}$

Rearrange the equation of the bowl's curve to make x^{2} the subject in terms of y. Then, in a Graphs application, sketch the curve to visualise the bowl and the water within, up to a height of 12 cm .

The volume of water is given by the integral $\pi \int_{0}^{12} 5 y d y$. This integral is able to be calculated by hand using standard techniques.

Using the TI-Nspire CX CAS involves typing out the integral including the terminals, ensuring the π is preceding the integral.

Question 5

129 units
Define the equation of the curve as a function $f(x)$ in a Calculator application, then define the derivative as $d f(x)$.

The required arc length is given by the integral $\int_{3}^{6} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.
This integral is able to be calculated by hand using various algebraic and calculus techniques.

Using the TI-Nspire CX CAS involves performing the integration with the appropriate defined derivative function, ensuring the terminals and variable of integration are correct.

[^0]: * When using CAS as a calculation and/or algebraic manipulation tool, it is important to set out working clearly.

