Applications of Differential Equations Population \& Newton's Law of Cooling Revision Sheet

Author: Stephen Crouch
Each of the questions included here can be solved using the TI-Nspire CX CAS.

Question 1

The number of moths N in a colony grows at a rate proportional to the current number. Initially there were 90 moths, and after 5 months there were 150 moths present. How many moths are present after 10 months?

Response:

Question 2

A town's population increases at a rate proportional to the square root of its current population. At the start of a study the population was 1 million, and 8 years later the population was 4 million. What is the population of the town 12 years after the study commenced?

Response:
\qquad
\qquad

Question 3

A population P of rabbits t years after observation commenced is modelled by the differential equation $\frac{d P}{d t}=k P(375-P)$. It is known that the initial population of the rabbits is 25 , and after a year the population is 125. Show that $P=\frac{375}{1+14 e^{-375 k t}}$ where $k=\frac{1}{375} \log _{e}(7)$. Hence, determine the maximum population of rabbits. Response:
\qquad
\qquad

Question 4

A radioactive substance decays at a rate proportional to the amount Q present at time t.
That is, $\frac{d Q}{d t}=-k Q$. Initially, $Q=500$ and when $t=30, Q=200$. Find Q when $t=90$.

Response:
\qquad
\qquad
\qquad

Question 5

Two substances, A and B, react chemically to form a substance X. Initially there are 4 grams of substance A, 5 grams of substance B and substance X is not present. After 5 minutes, 4 grams of substance X has formed and the reaction rate is $\frac{d x}{d t}=k\left(4-\frac{x}{2}\right)\left(5-\frac{x}{2}\right)$ where there is x grams of substance X at time t minutes after the reaction started $(x \in[0,8))$. Find $x(t)$ and hence find the amount of substance X present after 10 minutes. Response:
\qquad
\qquad
\qquad

Question 6

A container of hot water at $100^{\circ} \mathrm{C}$ is placed on a kitchen bench with a constant ambient temperature of $28^{\circ} \mathrm{C}$. After 3 minutes, the temperature of the water is $76^{\circ} \mathrm{C}$. Assuming that Newton's law of Cooling $\frac{d \theta}{d t}=-k\left(\theta-\theta_{a}\right)$ applies, find the temperature of the water in the container after 6 minutes.

Response:
\qquad
\qquad
\qquad
\qquad

Answers*

Question 1

$N(10)=250$ moths
In a Calculator application, the deSolve command can be used with the differential equation and initial condition to determine $N(t)$. To find the value of the constant k, the other condition can be used. This value of k can then be substituted back into the solution to fully define $N(t)$, after which $t=10$ can be substituted in to find $N(10)$.

$$
\begin{aligned}
\frac{d N}{d t} & =k N \text { with } N(0)=90 \\
N(t) & =90 e^{k t} \\
k & =\frac{1}{5} \log _{e}\left(\frac{5}{3}\right) \text { since } N(5)=150 \\
N(t) & =90\left(\frac{5}{3}\right)^{\frac{t}{5}} \\
N(10) & =250
\end{aligned}
$$

Question 2

6.5 million

In a Calculator application, the deSolve command can be used with the differential equation and initial condition to determine $P(t)$. To find the value of the constant k, the other condition can be used. This value of k can then be substituted back into the solution to fully define $P(t)$, after which $t=12$ can be substituted to find $P(12)$.

$$
\begin{aligned}
\frac{d P}{d t} & =k \sqrt{P} \text { with } P(0)=1 \\
\sqrt{P(t)} & =\frac{k t}{2}+1 \\
k & =\frac{1}{4} \text { since } P(8)=4 \\
\sqrt{P(t)} & =\frac{t}{8}+1 \\
P(t) & =\frac{(t+8)^{2}}{64} \\
P(12) & =\frac{25}{4}=6.25
\end{aligned}
$$

[^0]
Question 3

$$
P_{\max }=375 \text { rabbits }
$$

In a Calculator application, the deSolve command can be used with the differential equation and initial condition to determine $P(t)$. To find the value of the constant k, the other condition can be used. This value of k can then be substituted back into the solution to fully define $P(t)$, after which the limit of $P(t)$ as $t \rightarrow \infty$ can be found.

$$
\begin{aligned}
\frac{d P}{d t} & =k P(375-P) \text { with } P(0)=25 \\
P(t) & =\frac{375 e^{375 k t}}{e^{375 k t}+14}, \text { now multiply by } \frac{e^{-375 k t}}{e^{-375 k t}}: \\
& =\frac{375}{1+14 e^{-375 k t}} \\
k & =\frac{1}{375} \log _{e}(7) \text { since } P(1)=125 \\
P(t) & =\frac{375}{1+14 e^{-\log _{e}(7) t}} \\
& =\frac{375}{1+14\left(7^{-t}\right)} \\
P_{\max } & =\lim _{t \rightarrow \infty} P(t)=375
\end{aligned}
$$

Question 4

$Q(90)=32$
In a Calculator application, the deSolve command can be used with the differential equation and initial condition to determine $Q(t)$. To find the value of the constant k, the other condition can be used. This value of k can then be substituted back into the solution to fully define $Q(t)$, after which $t=90$ can be substituted to find $Q(90)$.

$$
\begin{aligned}
\frac{d Q}{d t} & =-k Q \text { with } Q(0)=500 \\
Q(t) & =500 e^{-k t} \\
k & =\frac{1}{30} \log _{e}\left(\frac{5}{2}\right) \text { since } Q(30)=200 \\
Q(t) & =500\left(\frac{2}{5}\right)^{\frac{t}{30}} \\
Q(90) & =32
\end{aligned}
$$

1.1	2.1	3.1
$>$	Applicatio...ing	

RAD $\square \times$

$$
\begin{aligned}
& \text { deSolve }\left(p^{\prime}=k \cdot p \cdot(375-p) \text { and } p(0)=25, t_{3} p\right) \\
& p=\frac{375 \cdot \mathbf{e}^{375 \cdot k \cdot t}}{\mathbf{e}^{375 \cdot k \cdot t}+14} \\
& \text { solve } \left.\left(p=\frac{375 \cdot \mathbf{e}^{375 \cdot k \cdot t}}{\mathbf{e}^{375 \cdot k \cdot t}+14}, k\right) \right\rvert\, t=1 \text { and } p=125 \\
& k=\frac{\ln (7)}{375}
\end{aligned}
$$

Question 5

$$
x(10)=5.5 \text { grams }
$$

In a Calculator application, the deSolve command can be used with the differential equation and initial condition to determine $x(t)$. To find the value of the constant k, the other condition can be used. This value of k can then be substituted back into the solution to fully define $x(t)$, after which $t=10$ can be substituted to find $x(10)$.

$$
\begin{aligned}
\frac{d x}{d t} & =k\left(4-\frac{x}{2}\right)\left(5-\frac{x}{2}\right) \text { with } x(0)=0 \\
x(t) & =\frac{40\left(e^{\frac{k t}{2}}-1\right)}{5 e^{\frac{k t}{2}}-4} \\
k & =-\frac{2}{5} \log _{e}\left(\frac{5}{6}\right) \text { since } x(5)=4 \\
x(t) & =\frac{40\left(\sqrt[5]{5^{t}}-\sqrt[5]{6^{t}}\right)}{4 \sqrt[5]{5^{t}}-5 \sqrt[5]{6^{t}}} \\
x(10) & =5.5
\end{aligned}
$$

Question 6

$$
\theta(6)=60^{\circ} \mathrm{C}
$$

In a Calculator application, the deSolve command can be used with the differential equation and initial condition to determine $\theta(t)$. To find the value of the constant k, the other condition can be used. This value of k can then be substituted back into the solution to fully define $\theta(t)$, after which $t=6$ can be substituted to find $\theta(6)$.

$$
\begin{aligned}
\frac{d \theta}{d t} & =-k(\theta-28) \text { with } \theta(0)=100 \\
\theta(t) & =72 e^{-k t}+28 \\
k & =\frac{1}{3} \log _{e}\left(\frac{3}{2}\right) \text { since } \theta(3)=76 \\
\theta(t) & =72\left(\frac{2}{3}\right)^{\frac{t}{3}}+28 \\
\theta(6) & =60
\end{aligned}
$$

4.1 5.1 6.1 Applicatio..ing \quad RAD \times

[^0]: * When using CAS as a calculation and/or algebraic manipulation tool, it is important to set out by-hand working clearly.

