Mechanics (Dynamics)

Author: Stephen Crouch

Each of the questions included here can be solved using TI-Nspire CX CAS technology. Take the acceleration due to gravity to have magnitude $g \text{ m/s}^2$, where g = 9.8. Ensure that the Angle mode is set to **Degrees**.

Question 1

Three forces of magnitude 4 N, 6 N and $\sqrt{10}$ N are acting on a particle at *O*. The 4 N force acts at an angle of 30° to the *x*-axis and the 6 N force acts at an angle of 45° to the *x*-axis, both in the horizontal plane, as shown in the diagram. Given that \underline{i} , \underline{j} and \underline{k} are unit vectors in the

direction of the x-, y- and z-axis respectively, and the third force acting is

 $\sqrt{3}i + \sqrt{2}j + \sqrt{5}k$, the magnitude of the net force is closest to

- **A.** 9.91 N
- **B.** 9.92 N
- **C.** 10 N
- **D.** 12.35 N
- **E.** 12.36 N

Question 2

A surfboarder of mass 70 kg is being towed on the end of a rope by a jet ski.

The rope maintains an angle of 5° above the horizontal throughout the first stage of the manoeuvre. The tension in the rope is $T \ N$ and there is a total resistance (air & water) force of $30 \ N$ acting on the surfboarder.

- a) Write down an equation of motion for the surfboarder, given that the acceleration is $a \text{ m/s}^2$, a > 0.
- b) If a = 3.3, find the value of T, correct to the nearest integer.
- c) After some time, the second stage of the the manoeuvre begins.

The tension in the rope changes to 300 N, the acceleration of the surfboarder increases to 3.85 m/s^2 and the angle between the rope and the horizontal decreases to θ° . Find θ , correct to one decimal place. Response:

Question 3

A 5 kg box is on the floor of a lift that is accelerating upwards at 3 m/s^2 . The reaction force of the floor on the box is

- **A.** 49 N
- **B.** 34 N
- **C.** 64 N
- **D.** 15 N
- **E.** 0 N

© Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

y 6N 4N 45° 30° x

Question 4

Į,

Texas Instruments

Write an equation of motion for the box and hence write a definite integral to evaluate the time taken for the box to reach a speed of 9 m/s from rest. Evaluate this definite integral, stating the answer correct to two decimal places.

Response:

Question 5

A box of mass 6 kg on a smooth plane inclined to the horizontal at an angle of 30° is connected by a light inelastic string over a smooth pulley at the top of the plane to a box of 4 kg which is hanging vertically. At the instant the 4 kg box is moving downwards at 1 m/s, it is 7.41 m above the floor. Calcuate how long it takes to reach the floor.

Response:

© Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question 6

The diagram shows two objects of mass 7 kg and 10 kg connected by a light inelastic string passing over a smooth pulley. The objects are initially at rest. The distance that the 10 kg object moves downwards in two seconds after being released from rest is closest to

- **A.** 3.00 m
- **B.** 3.53 m
- **C.** 3.52 m
- **D.** 3.46 m
- **E.** 3.45 m

Question 7

Two parcels *A* and *B* are connected by a light inelastic string and are placed on a smooth inclined plane inclined at 45° to the horizontal. Parcel *B* is connected by a light inelastic string over a smooth pulley at the top of the plane to a box *C* which is hanging vertically, as shown in the diagram below. Find the acceleration of the system in m/s^2 .

Question 8

An object of mass 8 kg at rest on a smooth horizontal surface is acted on by a horizontal force that decreases uniformly with the distance travelled. This force is 20 N at the start (x = 0) and 10 N after travelling a distance of 20 m. Calculate the exact speed of the object at the end of this 20 m movement. Response:

[©] Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Answers*

Question 6

Distance =
$$\frac{294}{85}$$
 m \approx 3.46 m (**D**.)

Label the diagram with the weight and tension forces (taking care with arrow sizes, especially T).

4.1 5.1	6.1	▶ Mechaniccs)	DEG 📘	\times
solve $\left(\begin{cases} 10 \cdot g - t = 10 \cdot a \\ t - 7 \cdot g = 7 \cdot a \end{cases}, \{a\} \right) g = 9.8$				
		$a = \frac{147}{85}$ and $t = \frac{147}{85}$	1372 17	l
$s = u \cdot t + \frac{1}{2} \cdot a \cdot t^2 u = 0 \text{ and } a = \frac{147}{85} \text{ and } t = 2$				
			s= <u>294</u> 85	·

 $10g - T = 10a \cdots 1$ For the 7 kg object: $T - 7g = 7a \cdots 2$ Solving 1 and 2 using CAS gives $a = \frac{147}{85}$ and $T = \frac{1372}{17}$. Using $s = ut + \frac{1}{2}at^2$ with u = 0 and t = 2 gives $s = \frac{294}{85}$.

^{*} When using CAS as a calculation and/or algebraic manipulation tool, it is important to set out working clearly. © Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question 7

$$a = \frac{49}{80} (10 - 3\sqrt{2}) \text{ m/s}^2$$

Label the diagram with the weight, normal reaction and tension forces.

For parcel A: $T_{AB} - 1g \sin(45^{\circ}) = 1a \cdots 1$ For parcel B: $T_{BC} - 2g \sin(45^{\circ}) - T_{AB} = 2a \cdots 2$ For parcel C: $5g - T_{BC} = 5a \cdots 3$ Solving 1, 2 and 3 using CAS gives $a = \frac{49}{80}(10 - 3\sqrt{2})$, $T_{AB} = \frac{49}{16}(2 + \sqrt{2})$ and $T_{BC} = \frac{147}{16}(2 + \sqrt{2})$.

Question 8

Speed = $5\sqrt{3}$ m/s The force is linear, with negative gradient of $\frac{10-20}{20} = -\frac{1}{2}$. Finding the function, using $F - 20 = -\frac{1}{2}(x-0)$, gives $F = 20 - \frac{1}{2}x$. This can be divided by the mass of 8 to get the acceleration $a = \frac{40-x}{16}$. Using $a = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$, the change in $\frac{1}{2}v^2$ from x = 0 to x = 20 is found by calculating $\int_{0}^{20} \frac{40-x}{16} dx$. Given that the object starts at rest, its increase and thus its final value of $\frac{1}{2}v^2$ is $\frac{75}{2}$. Therefore the final speed, that is, |v|, is $5\sqrt{3}$ m/s.

Alternatively, given that there is no friction involved (on either the inclined plane or the pulley), the acceleration may also be obtained using the net force:

$$\Sigma F = 5g - 2g\sin(45^\circ) - 1g\sin(45^\circ)$$
$$= 49 - \frac{147\sqrt{2}}{10}$$

Therefore the acceleration, using Newton's 2^{nd} law, is:

$$a = \frac{\Sigma F}{m}$$
$$= \frac{1}{8} \left(49 - \frac{147\sqrt{2}}{10} \right)$$
$$= \frac{49}{80} \left(10 - 3\sqrt{2} \right)$$

4 6.1 7.1 8.1 ▶ Mechaniccs)	DEG 🚺 🗙
<u>10-20</u> 20	$\frac{-1}{2}$
$\operatorname{solve}\left(f-20=\frac{-1}{2}\cdot(x-0)f\right)$	$f=20-\frac{x}{2}$
$a = \frac{f}{8} f = 20 - \frac{x}{2}$	$a = \frac{-(x-40)}{16}$
$\int_{0}^{20} \frac{-(x-40)}{16} \mathrm{d}x$	75 2
$\operatorname{solve}\left(\frac{1}{2}, v^2 = \frac{75}{2}, v\right) v > 0$	$\nu=5\cdot\sqrt{3}$

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

[©] Texas Instruments 2020.