Mechanics (Dynamics)

Author: Stephen Crouch

Each of the questions included here can be solved using TI-Nspire CX CAS technology.
Take the acceleration due to gravity to have magnitude $g \mathrm{~m} / \mathrm{s}^{2}$, where $g=9.8$.
Ensure that the Angle mode is set to Degrees.

Question 1

Three forces of magnitude $4 \mathrm{~N}, 6 \mathrm{~N}$ and $\sqrt{10} \mathrm{~N}$ are acting on a particle at O. The 4 N force acts at an angle of 30° to the x-axis and the 6 N force acts at an angle of 45° to the x-axis, both in the horizontal plane, as shown in the diagram. Given that $\underset{\sim}{i}, \underset{\sim}{j}$ and $\underset{\sim}{k}$ are unit vectors in the direction of the x-, y-and z-axis respectively, and the third force acting is $\sqrt{3} \underset{\sim}{i}+\sqrt{2} \underset{\sim}{j}+\sqrt{5} \underset{\sim}{k}$, the magnitude of the net force is closest to
A. 9.91 N
B. 9.92 N
C. 10 N
D. 12.35 N

E. 12.36 N

Question 2

A surfboarder of mass 70 kg is being towed on the end of a rope by a jet ski.
The rope maintains an angle of 5° above the horizontal throughout the first stage of the manoeuvre. The tension in the rope is $T \mathrm{~N}$ and there is a total resistance (air \& water) force of 30 N acting on the surfboarder.
a) Write down an equation of motion for the surfboarder, given that the acceleration is $a \mathrm{~m} / \mathrm{s}^{2}, a>0$.
b) If $a=3.3$, find the value of T, correct to the nearest integer.
c) After some time, the second stage of the the manoeuvre begins.

The tension in the rope changes to 300 N , the acceleration of the surfboarder increases to $3.85 \mathrm{~m} / \mathrm{s}^{2}$ and the angle between the rope and the horizontal decreases to θ°. Find θ, correct to one decimal place.
Response:

Question 3

A 5 kg box is on the floor of a lift that is accelerating upwards at $3 \mathrm{~m} / \mathrm{s}^{2}$. The reaction force of the floor on the box is
A. 49 N
B. 34 N
C. 64 N
D. 15 N
E. 0 N

Question 4

A 10 kg box is pulled along a horizontal surface by an 8 N force, acting at an angle of 27° to the horizontal, as shown. As the box moves, a resistive force impedes its motion, with a
 magnitude $F_{r}=0.1 v$, where $v \mathrm{~m} / \mathrm{s}$ is the speed of the box at time $t \mathrm{~s}$.
Write an equation of motion for the box and hence write a definite integral to evaluate the time taken for the box to reach a speed of $9 \mathrm{~m} / \mathrm{s}$ from rest. Evaluate this definite integral, stating the answer correct to two decimal places.

Response:

Question 5

A box of mass 6 kg on a smooth plane inclined to the horizontal at an angle of 30° is connected by a light inelastic string over a smooth pulley at the top of the plane to a box of 4 kg which is hanging vertically. At the instant the 4 kg box is moving downwards at $1 \mathrm{~m} / \mathrm{s}$, it is 7.41 m above the floor. Calcuate how long it takes to reach the floor.

Response:

Question 6

The diagram shows two objects of mass 7 kg and 10 kg connected by a light inelastic string passing over a smooth pulley. The objects are initially at rest. The distance that the 10 kg object moves downwards in two seconds after being released from rest is closest to
A. 3.00 m
B. 3.53 m
C. 3.52 m
D. 3.46 m
E. 3.45 m

Question 7

Two parcels A and B are connected by a light inelastic string and are placed on a smooth inclined plane inclined at 45° to the horizontal. Parcel B is connected by a light inelastic string over a smooth pulley at the top of the plane to a box C which is hanging vertically, as shown in the diagram below. Find the acceleration of the system in $\mathrm{m} / \mathrm{s}^{2}$.

Response:

Question 8

An object of mass 8 kg at rest on a smooth horizontal surface is acted on by a horizontal force that decreases uniformly with the distance travelled. This force is 20 N at the start $(x=0)$ and 10 N after travelling a distance of 20 m . Calculate the exact speed of the object at the end of this 20 m movement.
Response:

Answers*

Question 6

Distance $=\frac{294}{85} \mathrm{~m} \approx 3.46 \mathrm{~m}$ (D.)
Label the diagram with the weight and tension forces (taking care with arrow sizes, especially T).

4.1 | $5.1 \quad 6.1>$ Mechanic...cs) |
| :--- |
| solve $\left(\left.\left\{\begin{array}{l}10 \cdot g-t=10 \cdot a \\ t-7 \cdot g=7 \cdot a\end{array},\{a\}\right) \right\rvert\, g=9.8\right.$ |
| $a=\frac{147}{85}$ and $t=\frac{1372}{17}$ |
| $\left.s=u \cdot t+\frac{1}{2} \cdot a \cdot t^{2} \right\rvert\, u=0$ and $a=\frac{147}{85}$ and $t=2$ |
| $s=\frac{294}{85}$ |

For the 10 kg object:
$10 g-T=10 a \cdots \ldots$. 1
For the 7 kg object:

$$
T-7 g=7 a
$$

Solving 1 and 2 using CAS gives $a=\frac{147}{85}$ and
$T=\frac{1372}{17}$.
Using $s=u t+\frac{1}{2} a t^{2}$ with $u=0$ and $t=2$ gives $s=\frac{294}{85}$.

[^0]$a=\frac{49}{80}(10-3 \sqrt{2}) \mathrm{m} / \mathrm{s}^{2}$
Label the diagram with the weight, normal reaction and tension forces.

For parcel A :
$T_{A B}-1 g \sin \left(45^{\circ}\right)=1 a$
For parcel B :
$T_{B C}-2 g \sin \left(45^{\circ}\right)-T_{A B}=2 a \cdots \cdots \cdot 2$
For parcel C :
$5 g-T_{B C}=5 a$
Solving 1, 2 and 3 using CAS gives $a=\frac{49}{80}(10-3 \sqrt{2})$,
$T_{A B}=\frac{49}{16}(2+\sqrt{2})$ and $T_{B C}=\frac{147}{16}(2+\sqrt{2})$.

| 5.1 | 6.1 | 7.1 | Mechanic...cs) DEG $\square \times$ |
| :---: | :---: | :--- | :--- | :--- |

$$
\begin{aligned}
& \text { solve }\left(\begin{array}{l}
\left.\left\{\begin{array}{l}
t a b-1 \cdot g \cdot \sin (45)=a \\
t b c-2 \cdot g \cdot \sin (45)-t a b=2 \cdot a,\{a\} \\
5 \cdot g-t b c=5 \cdot a
\end{array}\right) \right\rvert\, g=9.8
\end{array}\right. \\
& a=\frac{-49 \cdot(3 \cdot \sqrt{2}-10)}{80} \text { and } t a b=\frac{49 \cdot(\sqrt{2}+2)}{16} \text { anc }
\end{aligned}
$$

Alternatively, given that there is no friction involved (on either the inclined plane or the pulley), the acceleration may also be obtained using the net force:

$$
\begin{aligned}
\Sigma F & =5 g-2 g \sin \left(45^{\circ}\right)-1 g \sin \left(45^{\circ}\right) \\
& =49-\frac{147 \sqrt{2}}{10}
\end{aligned}
$$

Therefore the acceleration, using Newton's $2^{\text {nd }}$ law, is:

$$
\begin{aligned}
a & =\frac{\Sigma F}{m} \\
& =\frac{1}{8}\left(49-\frac{147 \sqrt{2}}{10}\right) \\
& =\frac{49}{80}(10-3 \sqrt{2})
\end{aligned}
$$

Question 8

Speed $=5 \sqrt{3} \mathrm{~m} / \mathrm{s}$
The force is linear, with negative gradient of $\frac{10-20}{20}=-\frac{1}{2}$. Finding the function, using $F-20=-\frac{1}{2}(x-0)$, gives $F=20-\frac{1}{2} x$. This can be divided by the mass of 8 to get the acceleration $a=\frac{40-x}{16}$. Using $a=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$, the change in $\frac{1}{2} v^{2}$ from $x=0$ to $x=20$ is found by calculating $\int_{0}^{20} \frac{40-x}{16} d x$. Given that the object starts at rest, its increase and thus its final value of $\frac{1}{2} v^{2}$ is $\frac{75}{2}$.
Therefore the final speed, that is, $|v|$, is $5 \sqrt{3} \mathrm{~m} / \mathrm{s}$.

[^0]: * When using CAS as a calculation and/or algebraic manipulation tool, it is important to set out working clearly.

