# STUDENT REVISION SERIES

# Specialist Mathematics Exam Preparation MC Questions

#### **Poll Question**

The subset of the complex plane defined by the complex equation  $\left|\frac{z-2}{z+2}\right| = 1$  is

- A. a circle
- B. an ellipse
- C. a ray
- D. a straight line
- E. a hyperbola

#### Question: 1.

The asymptotes of the hyperbola  $\frac{(x-2)^2}{9} - \frac{(y+3)^2}{25} = 1$  have equations

A.  $y = \frac{5}{3}x + \frac{4}{3}$  and  $y = -\frac{5}{3}x - \frac{16}{3}$ B.  $y = \frac{5}{3}x - \frac{4}{3}$  and  $y = \frac{5}{3}x - \frac{16}{3}$ C.  $y = \frac{3}{5}x + \frac{4}{3}$  and  $y = -\frac{3}{5}x - \frac{16}{3}$ D.  $y = \frac{5}{3}x - \frac{19}{3}$  and  $y = -\frac{5}{3}x + \frac{1}{3}$ E.  $y = \frac{3}{5}x - \frac{4}{3}$  and  $y = -\frac{5}{3}x + \frac{4}{3}$ 

#### Question: 2.

Which of the following is an even function?

- A.  $f(x) = \operatorname{cosec}(x)$
- B.  $f(x) = \arcsin(|x|)$

C. 
$$f(x) = \arctan(x) + 1$$

D. 
$$f(x) = \arccos(x)$$

E. 
$$f(x) = \sec\left(x - \frac{\pi}{4}\right)$$

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

#### **Question: 3.**

Consider the circle |z + 3 - 2i| = 2. Which of the following lines intersects the circle exactly twice?

- A.  $\operatorname{Im}(z) = 0$
- $\mathsf{B.} \quad \mathsf{Re}(z) = 1$
- C. |z+3-2i| = |z-5|
- D. |z+3-2i| = |z+8i|
- E. |z+3-2i| = |z+1+i|

#### Question: 4.

The sum and product of the roots of the equation  $z^5 + z^4 + z^3 + z^2 + z + 1 = 0$ ,  $z \in C$  are respectively:

- A. -1, -1
- B. −1,0
- C. 0,-1
- D. 1, -1
- E. -1,1

#### Question: 5.

If  $z = (1-i)^n$  and |z| = 32 then

A. n = 8B. n = 10C. n = 5D. n = 4E. n = 2

#### **Question: 6.**

The complex number  $z = k \left( \cos \frac{\pi}{m} + i \sin \frac{\pi}{m} \right)$  is a root of the equation  $z^3 = w$ . Given  $w = 4 - 4\sqrt{3}i$  then

A. 
$$k = 1, m = 3$$
  
B.  $k = 2, m = 3$   
C.  $k = 2, m = -9$   
D.  $k = 3, m = 9$   
E.  $k = \frac{1}{2}, m = -9$ 

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Bozenna Graham

TEXAS INSTRUMENTS

#### Question: 7.

The solution of differential equation  $\frac{dy}{dx} = e^{2x} (1 + y^2)$  given that x = 0 when y = 1 is

A.  $y = \tan\left(\frac{e^{2x}}{2} - \frac{\pi}{4} + \frac{1}{2}\right)$ B.  $y = \tan\left(\frac{e^{2x}}{2} + \frac{\pi}{4} + \frac{1}{2}\right)$ C.  $y = \arctan\left(\frac{e^{2x}}{2} + \frac{\pi}{4}\right)$ D.  $y = \tan\left(\frac{e^{2x}}{2} + \frac{\pi}{4} - \frac{1}{2}\right)$ E.  $y = \arctan\left(\frac{e^{2x}}{2} + \frac{\pi}{4} - \frac{1}{2}\right)$ 

#### **Question: 8.**

The velocity, v, of the particle P, at time *t* is given by  $v(t) = e^{3t} - 2e^t$ . The distance covered by P between t = 0 and  $t = \log_e 3$  is closest to

- A. 4.7
- B. 5.1
- C. 5.2
- D. 12.7
- E. 0.8

#### **Question: 9.**

A curve is defined by the equation  $4x^2 + 9y^2 = 36$ . The section of the curve in the first quadrant is rotated through  $360^{\circ}$  about the *y*-axis to form a solid of revolution with volume equal to

- A. 4π
- B. 8π
- C. 12π
- D. 16π
- E. 9π

#### Question: 10.

The vectors  $\underline{a} = -\underline{i} + 2\underline{j} + 2\underline{k}$ ,  $\underline{b} = \underline{i} - 3\underline{j} + \underline{k}$  and  $\underline{c} = \lambda \underline{i} - 5\underline{j} - 2\underline{k}$  are **linearly dependent** when the value of  $\lambda$  is

A. 
$$-\frac{53}{12}$$
  
B.  $\frac{17}{8}$   
C.  $-\frac{5}{8}$   
D.  $\frac{8}{17}$   
E.  $\frac{5}{8}$ 

#### Question: 11.

A particle is moving along a curve defined by the following parametric equations

 $x(t) = \sec(t)$  $y(t) = \sin(t)$ 

where  $0 \le t \le \pi$ .

The equation of the tangent to the curve at  $t = \frac{\pi}{6}$  is

A. 
$$y = \frac{3\sqrt{3}}{4}x - \frac{1}{2}$$
  
B.  $y = \frac{3\sqrt{3}}{4}x - 1$   
C.  $y = \frac{3\sqrt{3}}{4}x + 1$   
D.  $y = \frac{3\sqrt{3}}{4}x$   
E.  $y = \frac{3\sqrt{3}}{2}x - 1$ 

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

#### Question: 12.

A 14 kg mass is suspended in equilibrium from a horizontal ceiling by two identical light strings. Each string makes an angle of  $45^{\circ}$  with the ceiling as shown in the diagram.



The magnitude, in newtons, of the tension in each string is equal to

A.  $14\sqrt{2}$ B.  $7\sqrt{2}$ C.  $14\sqrt{2}g$ D.  $\frac{7g}{\sqrt{2}}$ E.  $7\sqrt{2}g$ 

#### Question: 13.

The length of arc of the graph of  $f:[0,4] \rightarrow R$ ,  $f(x) = \arctan(x) + 1$ , correct to 3 decimal places is:

- A. 4.345
- B. 4.350
- C. 18.880
- D. 4.620
- E. 4.068

#### Question: 14.

Euler's method, with a step size of 0.2, is used to approximate the solution of the differential equation  $\frac{dy}{dx} = x - y^2$ , with y = 0 when x = 1. The estimated value of y, to five decimal places, when x = 2 is

- A. 1.00233B. 1.09090
- C. 1.09091
- D. 1.10033
- E. 0.01033

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Bozenna Graham

#### Question: 15.

The position vector  $\underline{r}(t)$  of a mass of 5 kg after *t* seconds, where  $t \ge 0$ , is given by

$$r(t) = \sin(2t)i + \cos(t)j + \frac{5}{3}t^{3}k.$$

The force, in newtons, acting on the mass when  $t = \pi$  seconds is

- A.  $5j + 50\pi k$
- B.  $j + 10\pi k$
- C.  $2i + 5\pi j$
- D. 25*πk*
- E.  $2j + 5\pi k$

#### Question: 16.

Domain and range of 
$$h(x) = \frac{3}{\sqrt{\arcsin(2x)}}$$
 are, respectively

A. 
$$\left[-\frac{1}{2}, \frac{1}{2}\right]$$
 and  $\left[\frac{3\sqrt{2}}{\sqrt{\pi}}, \infty\right)$   
B.  $\left(0, \frac{1}{2}\right]$  and  $\left[\frac{3\sqrt{2}}{\sqrt{\pi}}, \infty\right)$   
C.  $\left[0, \frac{1}{2}\right]$  and  $\left(\frac{3\sqrt{2}}{\sqrt{\pi}}, \infty\right)$   
D.  $\left[0, \frac{1}{2}\right]$  and  $\left(\frac{3\sqrt{2}}{\sqrt{\pi}}, \infty\right)$   
E.  $\left(0, \frac{1}{2}\right)$  and  $\left(\frac{3\sqrt{2}}{\sqrt{\pi}}, \infty\right)$ 

#### Question: 17.

If 
$$\alpha$$
 is acute and  $\cos(2\alpha) = \frac{3}{4}$ , then  $\csc(\alpha)$  is

A. 
$$\frac{1}{2\sqrt{2}}$$
  
B. 
$$\frac{\sqrt{2}}{\sqrt{7}}$$
  
C. 
$$\frac{5}{4}$$
  
D. 
$$2\sqrt{2}$$
  
E. 
$$\sqrt{2}$$

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

TEXAS INSTRUMENTS

#### Question: 18.

The graph shows the relation  $(x^2 + y^2)^2 = x^2 - y^2$ .

Point P lies in the first quadrant and the tangent to the graph at P is horizontal. The coordinates of P are

A. 
$$\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)$$
  
B.  $\left(\frac{\sqrt{3}}{4}, \frac{\sqrt{2}}{4}\right)$   
C.  $\left(\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)$   
D.  $\left(\frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{4}\right)$   
E.  $(1,0)$ 



#### Question: 19.

Which of the following is true for the graph of  $y = \frac{x^2 + 2x}{x^2 - 1}$ 

- A. no points of inflection and two asymptotes
- B. three asymptotes and one point of inflection
- C. two asymptotes and one point of inflection
- D. three asymptotes and no points of inflection
- E. two asymptotes and no stationary points

#### Question: 20.

A particle moves in a straight line such that its velocity,  $v \text{ ms}^{-1}$ , at time t seconds is given by

$$v(t) = \begin{cases} 6t - t^2, & \text{for } 0 \le t \le 5\\ \frac{1}{2}(15 - t), & \text{for } t > 5 \end{cases}$$

The particle returns to its initial position at t = T.

The value of T, to three decimal places, is

| Α. | 31.234 |
|----|--------|
| Β. | 30.275 |

- C. 14.550
- D. 29.550
- D. 23.000
- E. 30.272

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Bozenna Graham

#### Question: 21.

A particle of mass 3 kg is traveling along a path so that its position vector, *r*, in metres, at time, *t*, in seconds, is  $\underline{r}(t) = 2t^3 \underline{i} - 3t^2 \underline{j} + t \underline{k}$ .

The magnitude, to the nearest integer, of momentum, in kg ms<sup>-1</sup>, of the particle at t = 3 is

- A. 171
- B. 445
- C. 148
- D. 454
- E. 154

#### **Question: 22**

Evaluate the following  $i + i^2 + i^3 + i^4 + ... + i^{199} + i^{200} + i^{201}$ 

| Α. | 0 | B1 | C. <i>i</i> | D. <i>—i</i> | E. 1 |
|----|---|----|-------------|--------------|------|
|    |   |    |             |              |      |



# Answers





**Domain:**  $\left(0, \frac{1}{2}\right]$ 



**Option D** 



#### Question 18 Option D



© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Bozenna Graham



#### Question 19 Option B



Asymptotes:



Point of inflection:



#### Question 20 Option B





© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Bozenna Graham

TEXAS INSTRUMENTS

## Question 21 Option A

| 4 2.1 2.2 3.1 ▶ *MC Answ 22                                                   | RAD 📘 🗙 |
|-------------------------------------------------------------------------------|---------|
| $r(t) \coloneqq \begin{bmatrix} 2 \cdot t^3 & -3 \cdot t^2 & t \end{bmatrix}$ | Done    |
| $\nu(t) := \frac{d}{dt} (r(t))$                                               | Done    |
| $\operatorname{norm}(\nu(3))$                                                 | √3241   |
| √32 <b>4</b> 1 · 3                                                            | 171.    |

## Question 22 Option C



© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

