Applications of Differential Equations: Inflow - Outflow Mixing Problems

Question: 1.
A tank initially holds 30 L of water in which 3 kg of salt has been dissolved. Pure water is poured into the tank at a rate of 8 L per minute. The mixture in the tank is stirred continuously and flows out of the tank at a rate of 4 L per minute.
a. Show that the differential equation for Q, the number of kilograms of salt in the tank after t minutes, is given by $\frac{d Q}{d t}=\frac{-4 Q}{30+4 t}$
b. Find Q in terms of t.
c. Find the amount of salt that has flowed out of the tank over the first 10 minutes. Give your answer correct to 1 decimal place.

Question: 2.

A tank initially contains 50 litres of water with 5 kg of salt dissolved in it. A salt solution with a concentration of 0.2 kg / L flows into the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$. The mixture is stirred uniformly and flows out at a rate of $3 \mathrm{~L} / \mathrm{min}$. Let x be the amount of salt in the tank after t minutes.
a. Show that the differential equation that describes this scenario is given by

$$
\frac{d x}{d t}=\frac{30-3 x}{50}
$$

b. Solve this differential equation to find x in terms of t
c. Calculate the amount if salt in the tank after 3 minutes. Give your answer correct to 2 decimal places.
d. Sketch the graph of x against t.

Question: 3.

An irrigation tank contains 2000 L of water that initially has 100 kg of a soluble fertilizer dissolved in it. The wellmixed solution is pumped out at a rate of $5 \mathrm{~L} /$ min. How much fertilizer is in the tank 20 min after the pumping process begins?

Question: 4.

A water storage plant has discovered that one of their 9000 L water tanks has a chlorine concentration of $5 \mathrm{mg} / \mathrm{L}$, above the safe limit of $3.5 \mathrm{mg} / \mathrm{L}$. To reduce the chlorine concentration, pure water is pumped into the tank at a rate of $30 \mathrm{~L} / \mathrm{min}$ and is pumped out at a rate of $60 \mathrm{~L} / \mathrm{min}$. Let x be the total amount of chlorine (mg) in the tank at any time $t(\mathrm{~min})$.
a. Show that $\frac{d x}{d t}=\frac{-2 x}{300-t}$
b. \quad Find x in terms of t
c. i. Find the volume of water in the tank when the concentration reaches $4 \mathrm{mg} / \mathrm{L}$
c. ii. When the concentration in the tank reaches $4 \mathrm{mg} / \mathrm{L}$, the water being pumped into the tank is switched to chlorine -treated water with a concentration of $3.5 \mathrm{mg} / \mathrm{L}$, and the rate of inflow is increased to $60 \mathrm{~L} / \mathrm{min}$. Show that the new differential equation describing this scenario is given by $\frac{d x}{d t}=180-\frac{4 x}{585}$
c. iii. Find how long it takes, following the switch to chlorine -treated water being pumped in, for the chlorine concentration in the tank to first drop below the safe limit. Give your answer in the form $a \log _{\mathrm{e}}(b)$, where a and b are positive integers.

Answers

Question 1

a.

$\frac{d V}{d t}=8 \frac{L}{\min } \quad \frac{d Q}{d V}=0$		
"Initially" "Mass" 3 kg "Volume" 30 L "Conc."		
$\frac{d V}{d t}=$		$V=\frac{Q}{30+4 t} \frac{\mathrm{~kg}}{L}$

$$
\begin{gathered}
\frac{d Q}{d t}={\frac{d Q}{d t_{\text {in }}}-\frac{d Q}{d t_{o u t}}}_{\frac{d Q}{d t}=(8 \times 0)-4 \times \frac{Q}{30+4 t}}^{c}+\frac{d Q}{d t}=-\frac{4 Q}{30+4 t}
\end{gathered}
$$

b. $Q(t)=\frac{45}{2 t+15}$, where the initial condition is $Q(0)=3$.

$$
\begin{array}{r}
\text { deSolve }\left(q^{\prime}=-4 \cdot \frac{q}{30+4 \cdot t} \text { and } q(0)=3, t, q\right) \\
\quad q=\frac{45}{2 \cdot t+15}
\end{array}
$$

c. We wish to measure the amount of salt that has flowed out of the tank, which is given by $\frac{d Q}{d t}$ out

$$
\begin{aligned}
\left.\int_{0}^{10} 4 \cdot \frac{q}{30+4 \cdot t}\right) \mathrm{d} t \left\lvert\, q=\frac{45}{2 \cdot t+15}\right. & \\
& \int_{0}^{10}\left|\frac{d Q}{d t_{\text {out }}}\right| d t=1.7 \mathrm{~kg}
\end{aligned}
$$

Question 2

a.

$\frac{d V}{d t}=3 \frac{L}{\min } \quad \frac{d x}{d V}=0.2 \frac{\mathrm{~kg}}{\mathrm{~L}}$
$\frac{d V}{d t}=3 \frac{L}{\min } \quad \frac{d Q}{d V}=\frac{x}{50} \frac{\mathrm{~kg}}{\mathrm{~L}}$
$\frac{d x}{d t}=\frac{d x}{d t}_{i n}-\frac{d x}{d t_{o u}}$

$$
\begin{gathered}
\frac{d x}{d t}=(3 \times 0.2)-3 \times \frac{x}{50} \\
\frac{d x}{d t}=\frac{30-3 x}{50}
\end{gathered}
$$

b.

$$
\text { deSolve }\left(x^{\prime}=\frac{30-3 \cdot x}{50} \text { and } x(0)=5, t, x\right)
$$

$$
x=10-5 \cdot \mathrm{e}^{\frac{-3 \cdot t}{50}}
$$

c. $x=5.82$

$$
\left.\| x=10-5 \cdot \mathbf{e}^{\frac{-3 \cdot t}{50}} \right\rvert\, t=3 \quad x=5.82365
$$

d. .

Question 3

$$
\frac{d V}{d t}=0 \frac{L}{\min } \quad \frac{d x}{d V}=0 \frac{k g}{L}
$$

$$
\frac{d V}{d t}=45 \frac{L}{\min } \quad \frac{d Q}{d V}=\frac{x}{2000-5 t} \frac{\mathrm{~kg}}{L}
$$

$$
\begin{gathered}
\frac{d x}{d t}=\frac{d x}{d t}_{\text {in }}-{\frac{d x}{d t_{\text {out }}}}_{\frac{d x}{d t}=(0 \times 0)-5 \times \frac{x}{2000-5 t}}^{\frac{d x}{d t}=-\frac{5 x}{2000-5 t}} \text {. }
\end{gathered}
$$

$$
\begin{aligned}
& \text { deSolve }\left(x^{\prime}=\frac{-5 \cdot x}{2000-5 \cdot t} \text { and } x(0)=100, t, x\right) \\
& x=\frac{-(t-400)}{4} \\
& \left.x=\frac{-(t-400)}{4} \right\rvert\, t=20
\end{aligned}
$$

Question 4

a.

$$
\frac{d V}{d t}=30 \frac{L}{\min } \quad \frac{d x}{d V}=0
$$

$$
\begin{gathered}
\frac{d x}{d t}={\frac{d x}{d t_{\text {in }}}-{\frac{d x}{d t_{\text {out }}}}_{\frac{d x}{d t}=(30 \times 0)-60 \times \frac{x}{9000-30 t}}^{\frac{d x}{d t}=-\frac{2 x}{300-t}}}^{2}
\end{gathered}
$$

b.

$$
\begin{array}{r}
\text { deSolve }\left(x^{\prime}=-2 \cdot \frac{x}{300-t} \text { and } x(0)=45000, t, x\right) \\
x=\frac{(t-300)^{2}}{2}
\end{array}
$$

c. \mathbf{i}. Volume is 7200 L

$$
\begin{array}{|ll}
\left.\begin{array}{|l}
\text { - solve }\left(\frac{x}{9000-30 \cdot t}=4, t\right.
\end{array}\right) \left\lvert\, x=\frac{(t-300)^{2}}{2}\right. & t=60 \\
v=9000-30 \cdot t \mid t=60 & v=7200
\end{array} \|
$$

c. ii.

$$
\begin{aligned}
& \text { ए } \frac{d V}{d t}=60 \frac{L}{\min } \quad \frac{d x}{d V}=3 \frac{m g}{L} \\
& \frac{d x}{d t}={\frac{d x}{d t_{i n}}}^{\text {in }}-\frac{d x}{d t_{\text {out }}} \\
& \frac{d x}{d t}=(60 \times 3)-60 \times \frac{x}{7200} \\
& \frac{d x}{d t}=180-\frac{x}{120}
\end{aligned}
$$

c. iii.

$$
\begin{array}{|}
\text { deSolve }\left(x^{\prime}=180-\frac{x}{120} \text { and } x(0)=28800, t, x\right) \\
x=7200 \cdot \mathbf{e}^{\frac{-t}{120}}+21600 \\
\text { solve }\left(\frac{x}{7200}=3.5, x\right)
\end{array}
$$

We need to know the amount of chlorine in the tank that would correspond to a concentration of $3.5 \mathrm{~m} / \mathrm{L}$

