Kinematics worksheet

Author: Bozenna Graham

Each of the questions included here can be solved using the TI-Nspire CX CAS.

Question 1

An object is dropped from the top of a 150-metre high building. If the acceleration due to gravity is 9.8 m/s², what will be the height of the object after 5 seconds? Assume motion at a constant acceleration.

Response:		

Question 2

Response:

A particle moves in a straight line, and at time t its displacement from a fixed origin is x and its velocity is v. If $\ddot{x} = \frac{1}{2}(v^2 - 1)$ and v = 2 when x = 0, find v in terms of x.

•		

Question 3

At the same time as a car travelling at 20 m/s passes a certain point, a second car starts from rest at that point and accelerates uniformly in pursuit of the first car until it reaches 30 m/s after 20 seconds. This speed is then maintained. Find the time taken for the second car to overtake the first car.

Response:
Question 4
The velocity, v m/s, of a particle at time t seconds ($t \ge 0$) is given by:
$v = \begin{cases} \sqrt{100 - t^2}, & 0 \le t \le 10\\ 10 - t, & t > 10 \end{cases}$
If the particle starts at the origin, the time at which it returns to the origin, in seconds, is: A 12.5 B. 22.5 C. 32.5 D. 38.2 E. 42.5
Response:

Answers

Answer: $\frac{55}{2}$ metres.

Question 2

Answer:
$$v = \sqrt{3e^x + 1}$$

Select a positive square root to fulfil the initial condition.

Question 3

Answer: 600 seconds

Question 4

Answer: B

Equate the areas:

