Kinematics worksheet

Author: Bozenna Graham

Each of the questions included here can be solved using the TI-Nspire CX CAS.

Question 1

An object is dropped from the top of a 150 -metre high building. If the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$, what will be the height of the object after 5 seconds?
Assume motion at a constant acceleration.
Response:
\qquad
\qquad
\qquad

Question 2

A particle moves in a straight line, and at time t its displacement from a fixed origin is x and its velocity is v. If $\ddot{x}=\frac{1}{2}\left(v^{2}-1\right)$ and $v=2$ when $x=0$, find v in terms of x.

Response:
\qquad
\qquad
\qquad

Question 3

At the same time as a car travelling at $20 \mathrm{~m} / \mathrm{s}$ passes a certain point, a second car starts from rest at that point and accelerates uniformly in pursuit of the first car until it reaches $30 \mathrm{~m} / \mathrm{s}$ after 20 seconds. This speed is then maintained. Find the time taken for the second car to overtake the first car.

Response:
\qquad
\qquad
\qquad

Question 4

The velocity, $v \mathrm{~m} / \mathrm{s}$, of a particle at time t seconds $(t \geq 0)$ is given by:
$v= \begin{cases}\sqrt{100-t^{2}}, & 0 \leq t \leq 10 \\ 10-t, & t>10\end{cases}$
If the particle starts at the origin, the time at which it returns to the origin, in seconds, is:
A 12.5
B. 22.5
C. 32.5
D. 38.2
E. 42.5

Response:
\qquad
\qquad
\qquad

Answers

Question 1

Answer: $\frac{55}{2}$ metres.

1.1
deSolve $\left(h^{\prime \prime}=\frac{-98}{10}\right.$ and $h(0)=150$ and $h^{\prime}(0)=0, t$,
$\left.150-\frac{49 \cdot t^{2}}{10} \right\rvert\, t=5$
$h=150-\frac{49 \cdot t^{2}}{10}$

Question 2

Answer: $v=\sqrt{3 e^{x}+1}$
*Doc
deSolve $\left(v \cdot v^{\prime}=\frac{1}{2} \cdot\left(v^{2}-1\right)\right.$ and $\left.v(0)=2, x, v\right)$
$v^{2}=3 \cdot \mathrm{e}^{x}+1$

Select a positive square root to fulfil the initial condition.

Question 3
Answer: 600 seconds

Draw velocity-time graph:

Check:

Equate distances travelled:

$\int_{0}^{30} f 1(x) \mathrm{d} x$

Question 4

Answer: B
Equate the areas:

