## Solving differential equations worksheet

## Author: Bozenna Graham

Each of the questions included here can be solved using the TI-Nspire CX CAS.

## Question 1

Find the possible values of $a$ and $b$ such that $x=t(a \cos (2 t)+b \sin (2 t))$ is the solution to the differential equation $\frac{d^{2} x}{d t^{2}}+4 x=2 \cos (2 t)$.

Response:
$\qquad$
$\qquad$
$\qquad$

## Question 2

Find the equation of the curve given by the following equation and which passes through the given point:
$\frac{d y}{d x}=2 x^{2} e^{-y}: x=0, y=0$

Response:
$\qquad$
$\qquad$
$\qquad$

## Question 3

The differential equation satisfied by $y=e^{k x^{2}}$ is:
A $\quad \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=0$
B $\quad \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$
C $\frac{d^{2} y}{d x^{2}}-2 k x \frac{d y}{d x}+2 k y=0$
D $\frac{d^{2} y}{d x^{2}}-2 k x \frac{d y}{d x}-2 k y=0$
E $\quad \frac{d^{2} y}{d x^{2}}-2 k x \frac{d y}{d x}-y=0$

Response:

Question 4
Solve $\frac{d x}{d t}=\sqrt{1-x^{2}} ; x\left(-\frac{\pi}{3}\right)=\frac{1}{\sqrt{2}}$


Response:

## Answers

## Question 1

Answer: $b=\frac{1}{2}$ and $a=0$

$\frac{d^{2}}{d t^{2}}(x(t))+4 \cdot x(t)=2 \cdot \cos (2 \cdot t)$

$$
4 \cdot b \cdot \cos (2 \cdot t)-4 \cdot a \cdot \sin (2 \cdot t)=2 \cdot \cos (2 \cdot t)
$$

Equating coefficients on both sides of the equation gives:
$4 b=2 \Rightarrow b=\frac{1}{2}$
$-4 a=0 \Rightarrow a=0$

Question 2
Answer: $y=\ln \left|\frac{2 x^{3}}{3}+1\right|$
$\frac{d y}{d x}=2 x^{2} e^{-y}: x=0, y=0$
$\int e^{y} d y=\int 2 x^{2} d x$
$e^{y}=\frac{2 x^{3}}{3}+c$
$\Rightarrow e^{y}=\frac{2 x^{3}}{3}+1$
$y=\ln \left|\frac{2 x^{3}}{3}+1\right|$

| 6.2 | 7.1 | 8.1 |
| :---: | :---: | :---: | :---: |
| $>$ | *Solving DEs | RAD $\square \times$ |

deSolve $\left(y^{\prime}=2 \cdot x^{2} \cdot \mathbf{e}^{-y}\right.$ and $\left.y(0)=0, x, y\right)$

$$
\mathrm{e}^{y}-1=\frac{2 \cdot x^{3}}{3}
$$

solve $\left(\mathrm{e}^{y}-1=\frac{2 \cdot x^{3}}{3}, y\right)$

$$
\left(2 \cdot x^{3}+3\right) \ln ^{\frac{1}{3}} \cdot 2^{\frac{2}{3}}
$$

## Question 3

Answer: D

| 1.1 | RAD |
| :--- | ---: |
| $y(x):=\mathbf{e}^{k \cdot x^{2}}$ | Done |
| $\frac{d}{d x}(y(x))$ | $2 \cdot k \cdot x \cdot \mathbf{e}^{k \cdot x^{2}}$ |
| $\frac{d^{2}}{d x^{2}}(y(x))$ | $\left(4 \cdot k^{2} \cdot x^{2}+2 \cdot k\right) \cdot \mathbf{e}^{k \cdot x^{2}}$ |
| 1 |  |

Substituting to D gives:

$$
\begin{aligned}
& \left(4 k^{2} x^{2}+2 k\right) e^{k x^{2}}-2 k x\left(2 k x e^{k x^{2}}\right)-2 k e^{k x^{2}} \\
& =\left(4 k^{2} x^{2}+2 k-4 k^{2} x^{2}-2 k\right) e^{k x^{2}} \\
& =0
\end{aligned}
$$

## Question 4

Answer: $x=\sin \left(t+\frac{7 \pi}{12}\right)$
$\int \frac{d x}{\sqrt{1-x^{2}}}=\int d t$
$\sin ^{-1}(x)=t+c$
$\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=-\frac{\pi}{3}+c \Rightarrow c=\frac{7 \pi}{12}$
$\sin ^{-1}(x)=t+\frac{7 \pi}{12}$
$x=\sin \left(t+\frac{7 \pi}{12}\right)$

