© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Vector Calculus

Poll Question

The position vector of a particle at time *t* seconds, $t \ge 0$, is given by $\underline{r}(t) = (3-t)\underline{i} - 6\sqrt{t}\underline{j} + 5\underline{k}$. The direction of motion of the particle when t = 9 is:

- A. -6i 18j + 5kB. -i j
- $\begin{array}{l} \text{D.} & \tilde{i} \tilde{6}j \\ \text{D.} & -\tilde{i} \tilde{j} + 5k \\ \text{E.} & -\tilde{1}3.5\tilde{j} \tilde{1}08\tilde{j} + 45\tilde{k} \end{array}$

Question: 1.

The position vector of an object moving in a plane is given by:

STUDENT REVISION SERIES

 $r(t) = t^3 i + t^2 j$

Find its velocity, speed, and acceleration when t = 1 and illustrate geometrically.

Question: 2.

The position of an object, r metres, is given by $r(t) = 3 \sin 2t \, \underline{i} + 3 \cos 2t \, \underline{j}$.

- (a) Find the speed at any time, t seconds.
- (b) Show that the velocity vector is always perpendicular to the acceleration vector.

Question: 3.

The motion of a figure skater relative to a fixed origin O, at time t minutes is modelled using the vector equation:

$$\underline{r}(t) = 8\cos(20t)\,\underline{i} + 12\sin\left(10t - \frac{\pi}{3}\right)\underline{j}, \ t \ge 0.$$

- a) Find the velocity vector and the acceleration vector of the figure skater.
- b) Find the speed of the figure skater after $\frac{\pi}{10}$ minutes.
- Find the times in one full cycle (when she completes 'an eight') at which velocity is perpendicular to c) acceleration.

C 36.2 m

А

В

D 40 m

45 m

29.4 m

Question: 4.

E 44.1 m

Question: 5.

In a trial first flight, an experimental drone follows the trajectory

$$\underline{r}(t) = (t - 3\sin t)\underline{i} + (4 - 3\cos t)\underline{j}, \ t \ge 0$$

but crashes into a wall at time t = 10.

The position vector of a projectile is:

Assume all distances are in metres and time is in seconds. Give all answers to two decimal places.

- a) At what times was the drone flying vertically?
- b) At what times was the drone flying horizontally?
- c) Calculate the total distance travelled by the drone until it crashes into the wall.

 $r(t) = 15t i + (29.4t - 4.9t^2) j$ metres. The maximum height of the projectile is equal to:

- d) Find the speed of the drone at t = 10.
- e) Find the angle at which the drone hit the wall.
- f) Find the maximum and minimum speeds of the drone during its flight.
- g) At what times the velocity was perpendicular to acceleration?
- h) Find the magnitude of the acceleration.

Question: 6.

The angle between the direction of two objects with respective position vectors

 $r_1 = \sin \pi t \dot{t} + 4t \dot{j}$ and $r_2 = t^2 \dot{t} - 3 \dot{j}$, when t = 1, is nearest to:

A 180°

- B 0°
- C 162°
- D 60°
- E 128°

Question: 7.

At time *t* a particle has position vector $\underline{r} = (3\sin t + \sin 2t)\underline{i} + (3\cos t - \cos 2t)\underline{j} + t\underline{k}, t \ge 0$. Find the maximum and minimum speeds of the particle.

Author: B Graham

Question: 8.

The displacement of a particle from the origin at time t, $t \ge 0$, is given by $\underline{r}(t) = e^{-2t} \underline{i} + \sin(\pi t) \underline{j} + 2\underline{k}$. The initial direction of motion of the particle is:

A. $4\underline{i}$ B. $\underline{i} + 2\underline{k}$ C. $-2\underline{i} + \underline{j}$ D. $-2\underline{i} + \pi \underline{j}$ E. $-2\underline{i} + \pi \underline{j} + 2\underline{k}$

Question: 9.

An object is thrown in the air and its position is described by the following:

$$\underline{r}(t) = 10.5t\,\underline{i} + \left(\frac{\pi}{2}t - 4\sin\left(\frac{\pi t}{8}\right)\right)\underline{j} + \left(2 + 19.5t - 5t^2\right)\underline{k}$$

where \underline{i} is a unit vector in the east direction, \underline{j} is a unit vector in the north direction and \underline{k} is a unit vector vertically up. The origin *O* of the coordinate system is at ground level and displacement are measured in metres.

- a) Find the velocity of the object at time t = 4.
- b) Find the angle between the path of the object and the ground after 4 seconds. Give your answer to the nearest degree.

Answers

Question 4 Option E

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question 7

Enter the position vector on your CAS calculator and find the velocity vector.

$$\begin{bmatrix} 3 \cdot \sin(t) + \sin(2 \cdot t) & 3 \cdot \cos(t) - \cos(2 \cdot t) & t \end{bmatrix} \rightarrow r(t)$$

$$Done$$

$$\frac{d}{dt}(r(t))$$

$$\begin{bmatrix} 2 \cdot \cos(2 \cdot t) + 3 \cdot \cos(t) & 2 \cdot \sin(2 \cdot t) - 3 \cdot \sin(t) & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 \cdot \cos(2 \cdot t) + 3 \cdot \cos(t) & 2 \cdot \sin(2 \cdot t) - 3 \cdot \sin(t) & 1 \end{bmatrix} \rightarrow v(t)$$

$$Done$$

Find the speed of the particle. Use tCollect to simplify the trigonometric expression inside the square root.

$$\operatorname{norm}(v(t)) = \sqrt{2 \cdot (6 \cdot \cos(t) \cdot \cos(2 \cdot t) - 6 \cdot \sin(t) \cdot \sin(2 \cdot t) + 7)}$$
$$\operatorname{tCollect}(\sqrt{2 \cdot (6 \cdot \cos(t) \cdot \cos(2 \cdot t) - 6 \cdot \sin(t) \cdot \sin(2 \cdot t) + 7)} + \sqrt{2 \cdot (6 \cdot \cos(3 \cdot t) + 7)}$$
$$\operatorname{expand}(2 \cdot (6 \cdot \cos(3 \cdot t) + 7)) = 12 \cdot \cos(3 \cdot t) + 14$$

Answer: maximum speed = $\sqrt{26}$ and minimum speed = $\sqrt{2}$.

Question 8 Option D

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question 9

a) Enter the position vector on you calculator and find the velocity vector.

$\left[\frac{105}{10} \cdot t \frac{\pi}{2} \cdot t - 4\right]$	$4 \cdot \sin\left(\frac{\pi \cdot t}{8}\right) 2 + \frac{195 \cdot t}{10} - 5 \cdot$	$t^2 ightarrow r(t)$
		Done
$\frac{d}{dt}(r(t))$	$\begin{bmatrix} \frac{21}{2} & \frac{\pi}{2} & \frac{\pi \cdot \cos\left(\frac{\pi \cdot t}{8}\right)}{2} \end{bmatrix}$	$\frac{39}{2} - 10 \cdot t$
$\begin{bmatrix} \pi \cdot \cos \theta \\ \frac{21}{2} & \frac{\pi}{2} \end{bmatrix}$	$\frac{s\left(\frac{\boldsymbol{\pi}\cdot\boldsymbol{t}}{8}\right)}{2} \frac{39}{2} - 10 \cdot \boldsymbol{t} \rightarrow \boldsymbol{v}(\boldsymbol{t})$	Done

Note that entering fractions instead of decimals will give you exact values for the velocity vector.

Now, find velocity at time t = 4.

Answer: $v(4) = \frac{21}{2}i + \frac{\pi}{2}j - \frac{41}{2}k$

b) We need to find the angle between velocity vector and the horizontal. One way of doing so is to find the angle between the k component and horizontal speed.

Answer: 63 degrees.

Į.

Texas Instruments