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Introduction
One ancient mathematical puzzle is sometimes called the Racecourse Paradox. 

A person is running a 1-mile racecourse. Of course, the runner must complete half 
the course (1/2 mile) before completing the entire course. But when the first half of 
the course is completed, the runner must complete half of what remains (1/4 mile) 
before finishing, and then complete half of what remains after that (1/8 mile) before 
finishing, and so on. Because there are infinitely many distances that the runner 
must complete before finishing the race, how can the runner ever hope to complete 
the entire course? 

Our everyday experience convinces you that the runner will certainly complete the 
race, yet adding up infinitely many positive distances would reasonably seem to sum 
up to an infinite total, or at least would take forever to actually compute! 

Exploration
In symbols, the question behind the Racecourse Paradox is whether it makes sense to 
add the infinitely many terms

and obtain a finite sum, namely 1.

Such an infinite summation is called an infinite series. Another notation that could 
be used for the infinite series in the Racecourse Paradox is

where the capital Greek letter sigma denotes a sum and the infinitely many terms 
are represented by substituting n = 1, 2, 3,… into the expression .
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Exploring
Infinite Series

• Identify a geometric series

• Determine convergence and sum of geometric series

• Identify a series that satisfies the alternating series test

• Use a graphing handheld to approximate the sum of a 
series

• TI-84 Plus / TI-83 Plus

Objectives

Materials
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The sum of the infinite series is defined as the limit of the corresponding sequence 
of partial sums. In this case, 

and the series converges. An infinite series whose sequence of partial sums has no 
limit is a series that diverges.

The infinite series encountered in the Racecourse Paradox is an example of a 
geometric series. A geometric series is one in which the ratio of any term to the one 
preceding it is always the same. In other words, there is a factor r (the constant ratio) 
such that each term in the series is r times the term immediately before it. 

You can see that the ratio is  for the infinite series

The mathematical resolution of the Racecourse Paradox does not involve actually 
adding up infinitely many terms, but rather by considering the infinite series as 
representing an infinite sequence of partial sums, each of which has only a finite 
number of terms. The sequence of partial sums corresponding to
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Two other examples of geometric series are

and

The ratio for the first example is , 

and the ratio for the second example is .

In general, any geometric series will have the form

where a is the first term in the series and r is the constant ratio. In summation 
notation, a geometric series is written as

Note that here the index n starts at n = 0, so the first term is .

It is not only easy to determine whether geometric series converge or diverge, but 
their exact sums can also be computed when they converge.
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To determine whether the series converges, decide whether

exists. If the limit exists, then that value is the sum of the series.

Sn can be expressed conveniently, as shown below. 

First, multiply Sn by r to get 

Now, subtract rSn from Sn:

Rearranging the terms on the right side of the equation,

If , then Sn can be solved for by factoring the left side of the equation and 
dividing both sides of the equation by (1 – r).

This form is used to find a limit for Sn. If  /1 < r < 1, then

because r n+1 approaches 0 as n increases. If either r > 1 or  r < /1, then the absolute 
value of r n+1 will grow without bound as n increases, and the limit will not exist. 
Two special values of r still need to be addressed. If r = 1, then

will also grow without bound as n increases, and the limit will not exist. 
If , then

is equal to 0 if n is odd and is equal to a if n is even, so the partial sums oscillate in 
value, and the limit still does not exist. 
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In summary, the geometric series 

converges and has sum  if /1 < r <1, and diverges if  or .

Returning to the prior two examples

converges to the sum

because the first term is a = 5 and the ratio  is between /1 and 1. 

As for the second example, 

diverges because the ratio  is greater than 1.

Keep in mind that an infinite series represents a sequence of partial sums. On the 
home screen, the seq command generates a list based on a formula, an index 
variable, a starting value, and an ending value. The sum command sums the terms in 
a list. Used together, you can calculate partial sums.
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An example follows.

On the home screen, enter seq(1/2^K,K,1,10).

Note: The seq command can be found in either the 
CATALOG or in the LIST Menu under OPS.

To convert the entries in the list to fraction form, 
select 1:Frac from the MATH Menu.

Use the sum command to find the sum of the ten 
terms in the list.

This results in the value of

the tenth partial sum of the series

The sequence mode on the graphing handheld is 
a good environment for investigating infinite 
series with tables and graphs. After you select 
the Seq MODE, input the values shown in the 
screenshot in the Y= editor:
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In sequence mode, the independent variable key f�produces the index 
variable n. Again, the sum command sums up the terms in a list, and the seq 
command generates a list based on a formula, an index variable, a starting value, 
and an ending value.

Used together in this way, u(n) represents the nth partial sum of our series.   

View the TABLE to see a list of results for these 
partial sums for different values of n.

To see these results displayed graphically (with values of n on the horizontal axis), 
first check the FORMAT Menu to make sure that Time is selected. Then set up the 
viewing window parameters as shown.

Select Dot mode, and press V�to see the 
partial sums plotted.
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1. Write the geometric series 

in summation notation. 

Use the graphing handheld to generate a list of the first eleven terms (n = 0 to 
n = 10) in both decimal and fraction form, and calculate the partial sum for 
n = 10. Then enter the sequence of partial sums in Y= editor, and plot each of the 
partial sums for n = 0 to n = 10 for the series.

2. Write the geometric series 

in summation notation.

Use the graphing handheld to generate a list of the first eleven terms (n = 0 to 
n = 10) in both decimal and fraction form, and calculate the partial sum for 
n = 10. Then enter the sequence of partial sums in the Y= editor, and plot each of 
the partial sums for n = 0 to n = 10 for the series.

3. Explain why the series

is a geometric series. Does it converge? If so, find its sum.

Use the graphing handheld to generate a list of the first eleven terms (n = 0 to
n = 10) in both decimal and fraction form, and calculate the partial sum for 
n = 10. Then enter the sequence of partial sums in the Y= editor, and plot each of 
the partial sums for n = 0 to n = 10 for the series.

4. Explain why the series 

is a geometric series. Does it converge? If so, find its sum. 

Use the graphing handheld to generate a list of the first eleven terms (n = 0 to 
n = 10) in both decimal and fraction form, and calculate the partial sum for 
n = 10. Then enter the sequence of partial sums in the Y= editor, and plot each of 
the partial sums for n = 0 to n =10 for the series in GRAPH.
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5. Explain why the series 

is not a geometric series. Do you think it converges? 

Use the graphing handheld to find the partial sum for n = 10, 20, and 50 in \ 
�. Then plot each of the partial sums for n = 0 to n = 100 for the series in 
GRAPH.

The infinite series in Question 5 is an important example called the harmonic 
series. In summation notation, the harmonic series is written as 

and it diverges, although very slowly. The graph of its partial sums should remind 
you of the graph of a logarithmic function. Logarithmic functions also grow 
without bound, and also very slowly.

Infinite series like the harmonic series show why relying on computation of 
partial sums to decide whether an infinite series converges is not practical. In the 
case of the harmonic series, the individual terms certainly approach 0. 

When n becomes large enough,  becomes smaller than the precision limits that 
the graphing handheld can detect. 

However, the contributions these small terms make to the total are enough to 
make the partial sums keep growing without bound.

With a geometric series, there is not only a test telling to identify whether it 
converges or diverges but also a formula that computes the exact sum of the 
series (in other words, the limit of the partial sums) when it does converge. 

There are many important series that are not geometric, but it is often very 
difficult to find the exact sum of a convergent series. The next best thing is to 
have a test that at least identifies whether a given series converges or diverges. 
Some tests also give a bound on the error that would occur if a partial sum as an 
approximation to the sum of the whole series were used if the series were 
convergent.

Series that have terms that alternate in sign (positive and negative) provide us 
with a simple test that provides both an answer to the convergence question and 
an error bound.
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If 

is an alternating series such that  for all n (the size of the terms 
decrease in absolute value) and 

then this alternating series converges. 

In this situation, the Nth partial sum 

 approximates the sum of 

with an error no larger than , the absolute value of the first term in the 
remainder of the series.

Note that this test does not give a formula for the exact sum of the alternating 
series, but it prescribes a way to approximate that sum with a predetermined 
level of accuracy of our choosing.

For example, the alternating harmonic series is given by

Although the harmonic series diverges, the alternating harmonic series satisfies 
the conditions of the alternating series test and must converge. Suppose that you 
wanted to calculate its sum within 0.01 of the actual value. 

The absolute value of the 100th term is . 

Calculate the 99th partial sum
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The error will be less than 0.01. 

Note: It is known that the alternating harmonic series converges exactly to ln(2), the natural 
logarithm of 2. Compare this to three decimal places, , to verify that the 
approximation is actually closer than 0.01 to the exact sum of the series. Keep in mind that 
the alternating series test establishes a “worst-case” error bound guarantee and 
approximations using partial sums could be much closer than this bound.

Use the \�� feature on the graphing 
handheld to make this calculation by 
defining the appropriate sequence of partial 
sums in the Y= editor, as shown below.

You can also compute it on the Home screen.

2 0.693≈ln
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For each of the following alternating series, determine whether each meets the 
conditions of the Alternating Series Test. If it does, find the smallest value n such 
that the nth partial sum would approximate the sum of the series to within 0.01, 
and find the value of that partial sum.
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